Xu Jing, Lv Wenli, Yang Wang, Jin Yang, Jin Qianzheng, Sun Bin, Zhang Zili, Wang Tianyi, Zheng Linfeng, Shi Xiaolong, Sun Bing, Wang Guoxiu
Research Center of Grid Energy Storage and Battery Application, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China.
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
ACS Nano. 2022 Jul 26;16(7):11392-11404. doi: 10.1021/acsnano.2c05285. Epub 2022 Jul 18.
The strong activity of water molecules causes a series of parasitic side reactions on Zn anodes in the aqueous electrolytes. Herein, we introduce silk fibroin (SF) as a multifunctional electrolyte additive for aqueous zinc-ion (Zn-ion) batteries. The secondary structure transformation of SF molecules from α-helices to random coils in the aqueous electrolytes allows them to break the hydrogen bond network among free water molecules and participate in Zn ion solvation structure. The SF molecules released from the [Zn(HO)(SF)] solvation sheath appear to be gradually adsorbed on the surface of Zn anodes and form a hydrostable and self-healable protective film. This SF-based protective film not only shows strong Zn ion affinity to promote homogeneous Zn deposition but also has good insulating behavior to suppress parasitic reactions. Benefiting from these multifunctional advantages, the cycle life of the Zn||Zn symmetric cells reaches over 1600 h in SF-containing ZnSO electrolytes. In addition, by adopting a potassium vanadate cathode, the full cell shows excellent cycling stability for 1000 cycles at 3 A g. The construction of a protective film on the Zn anode from natural protein molecules provides an effective strategy to achieve high-performance Zn metal anodes for Zn-ion batteries.
水分子的强烈活性会在水系电解质中的锌阳极上引发一系列寄生副反应。在此,我们引入丝素蛋白(SF)作为水系锌离子电池的多功能电解质添加剂。在水系电解质中,SF分子的二级结构从α螺旋转变为无规卷曲,这使它们能够打破自由水分子之间的氢键网络,并参与锌离子溶剂化结构。从[Zn(HO)(SF)]溶剂化鞘中释放出的SF分子似乎会逐渐吸附在锌阳极表面,形成一层水稳定且可自愈的保护膜。这种基于SF的保护膜不仅对锌离子具有很强的亲和力,可促进锌的均匀沉积,而且具有良好的绝缘性能,能抑制寄生反应。受益于这些多功能优势,在含SF的ZnSO电解质中,Zn||Zn对称电池的循环寿命超过1600小时。此外,通过采用钒酸钾阴极,全电池在3 A g的电流下循环1000次仍表现出优异的循环稳定性。利用天然蛋白质分子在锌阳极上构建保护膜,为实现用于锌离子电池的高性能锌金属阳极提供了一种有效策略。