Suppr超能文献

利用少数零成本变量的简单方程估算老年人四肢骨骼肌量。

Appendicular Skeletal Muscle Mass in Older Adults Can Be Estimated With a Simple Equation Using a Few Zero-Cost Variables.

机构信息

Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.

Dipartimento di Fisica "Ettore Pancini," University of Naples "Federico II," Napoli, Italy.

出版信息

J Geriatr Phys Ther. 2024;47(4):E149-E158. doi: 10.1519/JPT.0000000000000420. Epub 2024 Sep 18.

Abstract

BACKGROUND AND PURPOSE

Assessing appendicular skeletal muscle (ASM) mass is crucial for the diagnosis of numerous pathologies related to the decline of muscle mass in old age, such as sarcopenia, malnutrition, or cachexia. The dual-energy X-ray absorptiometer (DEXA) radiological technique, which is the gold standard for its assessment, is particularly costly and not routinely used in clinical practice. The aim of this study was to derive computationally simple equations capable of estimating the DEXA-measured ASM at zero cost in older adult populations.

METHODS

We used the cross-sectional data collected by the National Health and Nutrition Examination Survey (NHANES) over 7 years (1999-2006). The study sample included 16,477 individuals aged 18 years and over, of which 4401 were over 60 years old. We considered 38 nonlaboratory variables. For the derivation of the equations, we employed the Brain Project, an innovative artificial intelligence tool that combines genetic programming and neural networks. The approach searches simultaneously for the mathematical expression and the variables to use in the equation. The derived equations are useful to estimate the DEXA-measured ASM.

RESULTS AND DISCUSSION

A simple equation that includes the body weight of the patient as the sole variable can estimate the outcome of DEXA with an accuracy equivalent to previously published equations. When used to identify individuals over 60 years old with muscle mass loss, it achieved an area under the curve (AUC) value of 0.85 for both males and females. The inclusion of sex and anthropometric data (thigh and arm circumference) improved the accuracy for male individuals (AUC 0.89). The model is also suitable to be applied to the general adult population of 18 years of age or older. Using more than 3 variables does not lead to better accuracy.

CONCLUSIONS

The newly proposed equations have better diagnostic accuracy than previous equations for the estimation of DEXA-measured ASM. They are readily applicable in clinical practice for the screening of muscle mass loss in the over 60-year-old population with nearly zero-cost variables. The most complex model proposed in this study requires only the inspection of a simple diagnostic chart to estimate the status of muscle mass loss.

摘要

背景与目的

评估附肢骨骼肌(ASM)质量对于诊断与老年肌肉质量下降相关的许多疾病至关重要,例如肌少症、营养不良或恶病质。双能 X 射线吸收仪(DEXA)放射技术是评估 ASM 质量的金标准,但该技术特别昂贵,并且在临床实践中未常规使用。本研究旨在开发能够在老年人群中以零成本估算 DEXA 测量的 ASM 的计算简单的方程。

方法

我们使用国家健康和营养检查调查(NHANES)在 7 年(1999-2006 年)期间收集的横断面数据。研究样本包括 16477 名年龄在 18 岁及以上的个体,其中 4401 名年龄在 60 岁以上。我们考虑了 38 个非实验室变量。为了推导方程,我们使用了 Brain Project,这是一种创新的人工智能工具,它结合了遗传编程和神经网络。该方法同时搜索数学表达式和方程中使用的变量。推导的方程可用于估计 DEXA 测量的 ASM。

结果与讨论

一个简单的方程,仅包含患者的体重作为唯一变量,可以以与以前发表的方程相当的精度来估算 DEXA 的结果。当用于识别 60 岁以上肌肉质量下降的个体时,它在男性和女性中都实现了曲线下面积(AUC)值为 0.85。包含性别和人体测量数据(大腿和臂围)可提高男性个体的准确性(AUC 0.89)。该模型也适用于 18 岁或以上的一般成年人群。使用超过 3 个变量不会提高准确性。

结论

新提出的方程在估计 DEXA 测量的 ASM 方面比以前的方程具有更好的诊断准确性。它们可以在临床实践中以几乎零成本的变量用于筛查 60 岁以上人群的肌肉质量下降。本研究提出的最复杂模型仅需要检查一个简单的诊断图表即可估计肌肉质量下降的状态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验