Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.
Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States.
J Phys Chem Lett. 2024 Aug 8;15(31):8000-8006. doi: 10.1021/acs.jpclett.4c01103. Epub 2024 Jul 30.
Bacterial microcompartments (BMCs) are self-assembling, selectively permeable protein shells that encapsulate enzymes to enhance catalytic efficiency of segments of metabolic pathways through means of confinement. The modular nature of BMC shells' structure and assembly enables programming of shell permeability and underscores their promise in biotechnology engineering efforts for applications in industry, medicine, and clean energy. Realizing this potential requires methods for encapsulation of abiotic molecules, which have been developed here for the first time. We report cargo loading of BMC shells with ruthenium photosensitizers (RuPS) by two approaches─one involving site-specific covalent labeling and the other driven by diffusion, requiring no specific interactions between cargo molecules and shell proteins. The highly stable shells retain encapsulated cargo over 1 week without egress and preserve RuPS photophysical activity. This study is an important foundation for further work that will converge biological BMC architecture with synthetic chemistry to facilitate biohybrid photocatalysis.
细菌微室(BMCs)是自我组装的、具有选择通透性的蛋白质外壳,可将酶包裹在其中,通过限制作用来提高代谢途径片段的催化效率。BMC 外壳结构和组装的模块化性质使得外壳通透性的编程成为可能,并强调了它们在生物技术工程中的应用潜力,可应用于工业、医学和清洁能源等领域。为了实现这一潜力,需要开发封装非生物分子的方法,我们在这里首次开发了这种方法。我们通过两种方法实现了 BMC 外壳对钌敏化剂(RuPS)的货物装载,一种方法涉及特异性共价标记,另一种方法则由扩散驱动,不需要货物分子与外壳蛋白之间的特定相互作用。这些高度稳定的外壳可在没有逸出的情况下保留封装的货物超过 1 周,并保持 RuPS 的光物理活性。这项研究为进一步的工作奠定了重要基础,这些工作将汇聚生物 BMC 结构与合成化学,以促进生物杂化光催化。