Suppr超能文献

通过在创纪录的低功率下可控去除邻硝基苄基硫醇配体实现金纳米颗粒的按需烧结以制备导电图案

On-Demand Sintering of Gold Nanoparticles via Controlled Removal of o-Nitrobenzyl Thiol Ligands Under Record-Low Power for Conductive Patterns.

作者信息

Im Jisun, Heaton Charles, Putri Nur R E, Liu Changxu, Usuba Junichi, Butler Kevin, Fay Michael, Han Grace G D, Hooshmand Helia, Thompson Adam, Wildman Ricky, Hague Richard, Turyanska Lyudmila, Tuck Christopher

机构信息

Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK.

School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.

出版信息

Adv Sci (Weinh). 2025 Mar;12(12):e2415496. doi: 10.1002/advs.202415496. Epub 2025 Jan 31.

Abstract

Metal nanoparticles-based nanoinks have shown potential for fabricating metallic components essential to the realization of innovative 3D-printed electronic devices. However, fabricating metallic patterns on flexible, heat-sensitive substrates remains challenging due to high temperature and high energy sources, such as intense pulsed light (IPL), involved in the sintering process. Here an efficient sintering method is presented using ultralow power UV by leveraging the photocleavable ligand, o-nitrobenzyl thiol (NT), - functionalized gold nanoparticles (AuNPs). The controlled removal of NT ligands upon UV irradiation enhances light absorption by reducing the filling factor of voids in the printed layer, increasing the layer temperature, and facilitating further ligand desorption. This positive feedback mechanism accelerates nanoparticle sintering at several orders of magnitude lower energy than IPL, achieving an electrical conductivity of 7.0 × 10 S m. This nanoink promises the parallel printing of multimaterial components through ultralow power photonic sintering for fabricating multifunctional 3D-printed electronic devices.

摘要

基于金属纳米颗粒的纳米墨水已显示出制造对实现创新3D打印电子设备至关重要的金属部件的潜力。然而,由于烧结过程中涉及高温和高能量源,如强脉冲光(IPL),在柔性、热敏基板上制造金属图案仍然具有挑战性。在此,通过利用光可裂解配体邻硝基苄基硫醇(NT)功能化的金纳米颗粒(AuNPs),提出了一种使用超低功率紫外线的高效烧结方法。紫外线照射后NT配体的可控去除通过降低印刷层中孔隙的填充因子、提高层温度并促进进一步的配体解吸来增强光吸收。这种正反馈机制以比IPL低几个数量级的能量加速纳米颗粒烧结,实现了7.0×10 S m的电导率。这种纳米墨水有望通过超低功率光子烧结实现多材料部件的并行打印,以制造多功能3D打印电子设备。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5510/11948040/cd51b97df8f5/ADVS-12-2415496-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验