Suppr超能文献

评估生成式人工智能系统在医护人员心理健康问题中的应用:综合文献综述。

Evaluating GenAI systems to combat mental health issues in healthcare workers: An integrative literature review.

机构信息

Faculty of School of Life and Health Sciences, Nursing Department, The Jerusalem College of Technology-Lev Academic Center, Jerusalem, Israel; The Department of Vascular Surgery, The Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Tel Aviv, Israel.

Department of Nursing, School of Health Professions, Faculty of Medicine, Tel Aviv University.

出版信息

Int J Med Inform. 2024 Nov;191:105566. doi: 10.1016/j.ijmedinf.2024.105566. Epub 2024 Jul 26.

Abstract

BACKGROUND

Mental health issues among healthcare workers remain a serious problem globally. Recent surveys continue to report high levels of depression, anxiety, burnout and other conditions amongst various occupational groups. Novel approaches are needed to support clinician well-being.

OBJECTIVE

This integrative literature review aims to explore the current state of research examining the use of generative artificial intelligence (GenAI) and machine learning (ML) systems to predict mental health issues and identify associated risk factors amongst healthcare professionals.

METHODS

A literature search of databases was conducted in Medline then adapted as necessary to Scopus, Web of Science, Google Scholar, PubMed and CINAHL with Full Text. Eleven studies met the inclusion criteria for the review.

RESULTS

Nine studies employed various machine learning techniques to predict different mental health outcomes among healthcare workers. Models showed good predictive performance, with AUCs ranging from 0.82 to 0.904 for outcomes such as depression, anxiety and safety perceptions. Key risk factors identified included fatigue, stress, burnout, workload, sleep issues and lack of support. Two studies explored the potential of sensor-based technologies and GenAI analysis of physiological data. None of the included studies focused on the use of GenAI systems specifically for providing mental health support to healthcare workers.

CONCLUSION

Preliminary research demonstrates that AI/ML models can effectively predict mental health issues. However, more work is needed to evaluate the real-world integration and impact of these tools, including GenAI systems, in identifying clinician distress and supporting well-being over time. Further research should aim to explore how GenAI may be developed and applied to provide mental health support for healthcare workers.

摘要

背景

医护人员的心理健康问题仍是一个全球性的严重问题。最近的调查继续报告称,各种职业群体中抑郁、焦虑、倦怠和其他状况的发生率居高不下。需要采取新方法来支持临床医生的健康。

目的

本综述旨在探讨当前研究使用生成式人工智能(GenAI)和机器学习(ML)系统预测医疗保健专业人员心理健康问题并识别相关风险因素的研究现状。

方法

在 Medline 中进行了文献检索,然后根据需要在 Scopus、Web of Science、Google Scholar、PubMed 和 CINAHL with Full Text 中进行了调整。有 11 项研究符合本综述的纳入标准。

结果

9 项研究采用了各种机器学习技术来预测医护人员不同的心理健康结果。模型表现出良好的预测性能,对抑郁、焦虑和安全感知等结果的 AUC 范围为 0.82 至 0.904。确定的关键风险因素包括疲劳、压力、倦怠、工作量、睡眠问题和缺乏支持。两项研究探讨了基于传感器的技术和 GenAI 分析生理数据的潜力。没有一项纳入的研究专门关注使用 GenAI 系统为医疗保健工作者提供心理健康支持。

结论

初步研究表明,AI/ML 模型可以有效地预测心理健康问题。然而,需要做更多的工作来评估这些工具(包括 GenAI 系统)在识别临床医生的困境和随时间支持幸福感方面的实际整合和影响。进一步的研究应旨在探索如何开发和应用 GenAI 为医疗保健工作者提供心理健康支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验