Suppr超能文献

确保在医疗保健中有用地采用生成式人工智能。

Ensuring useful adoption of generative artificial intelligence in healthcare.

机构信息

Center for Biomedical Informatics Research, Stanford University, Stanford, CA 94305, United States.

Health and Life Sciences, Microsoft Corporation, Redmond, WA 98052, United States.

出版信息

J Am Med Inform Assoc. 2024 May 20;31(6):1441-1444. doi: 10.1093/jamia/ocae043.

Abstract

OBJECTIVES

This article aims to examine how generative artificial intelligence (AI) can be adopted with the most value in health systems, in response to the Executive Order on AI.

MATERIALS AND METHODS

We reviewed how technology has historically been deployed in healthcare, and evaluated recent examples of deployments of both traditional AI and generative AI (GenAI) with a lens on value.

RESULTS

Traditional AI and GenAI are different technologies in terms of their capability and modes of current deployment, which have implications on value in health systems.

DISCUSSION

Traditional AI when applied with a framework top-down can realize value in healthcare. GenAI in the short term when applied top-down has unclear value, but encouraging more bottom-up adoption has the potential to provide more benefit to health systems and patients.

CONCLUSION

GenAI in healthcare can provide the most value for patients when health systems adapt culturally to grow with this new technology and its adoption patterns.

摘要

目的

本文旨在探讨生成式人工智能(AI)如何在医疗体系中实现最大价值,以响应关于 AI 的行政命令。

材料与方法

我们回顾了技术在医疗保健领域的历史应用,并通过关注价值的视角,评估了传统 AI 和生成式 AI(GenAI)最近的应用案例。

结果

传统 AI 和 GenAI 在能力和当前部署模式上是不同的技术,这对医疗体系中的价值具有影响。

讨论

当自上而下地应用传统 AI 时,它可以在医疗保健领域实现价值。短期来看,自上而下地应用 GenAI 的价值尚不清楚,但鼓励更多的自下而上的采用有可能为医疗体系和患者带来更多的益处。

结论

当医疗体系从文化上适应新技术及其采用模式并与之共同发展时,GenAI 在医疗保健领域可以为患者提供最大的价值。

相似文献

4
Generative Artificial Intelligence in Nuclear Medicine Education.核医学教育中的生成式人工智能
J Nucl Med Technol. 2025 Mar 5;53(1):72-79. doi: 10.2967/jnmt.124.268323.
8

引用本文的文献

5
Precision at hand: Revolutionising surgery with generative AI.精准就在眼前:用生成式人工智能革新手术。
J Hand Microsurg. 2024 Jun 12;16(3):100090. doi: 10.1016/j.jham.2024.100090. eCollection 2024 Aug.
10
Evaluating the clinical benefits of LLMs.评估大语言模型的临床益处。
Nat Med. 2024 Sep;30(9):2409-2410. doi: 10.1038/s41591-024-03181-6.

本文引用的文献

5
Artificial Intelligence in U.S. Health Care Delivery.美国医疗保健服务中的人工智能
N Engl J Med. 2023 Jul 27;389(4):348-358. doi: 10.1056/NEJMra2204673.
6
ChatGPT and Physicians' Malpractice Risk.ChatGPT与医生的医疗事故风险。
JAMA Health Forum. 2023 May 5;4(5):e231938. doi: 10.1001/jamahealthforum.2023.1938.
9
Employer-Based Health Insurance and Employee Compensation.基于雇主的健康保险与员工薪酬
JAMA Health Forum. 2023 Mar 3;4(3):e225486. doi: 10.1001/jamahealthforum.2022.5486.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验