Center for Biomedical Informatics Research, Stanford University, Stanford, CA 94305, United States.
Health and Life Sciences, Microsoft Corporation, Redmond, WA 98052, United States.
J Am Med Inform Assoc. 2024 May 20;31(6):1441-1444. doi: 10.1093/jamia/ocae043.
This article aims to examine how generative artificial intelligence (AI) can be adopted with the most value in health systems, in response to the Executive Order on AI.
We reviewed how technology has historically been deployed in healthcare, and evaluated recent examples of deployments of both traditional AI and generative AI (GenAI) with a lens on value.
Traditional AI and GenAI are different technologies in terms of their capability and modes of current deployment, which have implications on value in health systems.
Traditional AI when applied with a framework top-down can realize value in healthcare. GenAI in the short term when applied top-down has unclear value, but encouraging more bottom-up adoption has the potential to provide more benefit to health systems and patients.
GenAI in healthcare can provide the most value for patients when health systems adapt culturally to grow with this new technology and its adoption patterns.
本文旨在探讨生成式人工智能(AI)如何在医疗体系中实现最大价值,以响应关于 AI 的行政命令。
我们回顾了技术在医疗保健领域的历史应用,并通过关注价值的视角,评估了传统 AI 和生成式 AI(GenAI)最近的应用案例。
传统 AI 和 GenAI 在能力和当前部署模式上是不同的技术,这对医疗体系中的价值具有影响。
当自上而下地应用传统 AI 时,它可以在医疗保健领域实现价值。短期来看,自上而下地应用 GenAI 的价值尚不清楚,但鼓励更多的自下而上的采用有可能为医疗体系和患者带来更多的益处。
当医疗体系从文化上适应新技术及其采用模式并与之共同发展时,GenAI 在医疗保健领域可以为患者提供最大的价值。