Suppr超能文献

基于多模态关系图学习的可解释医学图像视觉问答。

Interpretable medical image Visual Question Answering via multi-modal relationship graph learning.

机构信息

The University of Texas Arlington, Arlington, 76010, TX, USA.

RIKEN, Tokyo, Japan; University of Tokyo, Tokyo, Japan.

出版信息

Med Image Anal. 2024 Oct;97:103279. doi: 10.1016/j.media.2024.103279. Epub 2024 Jul 20.

Abstract

Medical Visual Question Answering (VQA) is an important task in medical multi-modal Large Language Models (LLMs), aiming to answer clinically relevant questions regarding input medical images. This technique has the potential to improve the efficiency of medical professionals while relieving the burden on the public health system, particularly in resource-poor countries. However, existing medical VQA datasets are small and only contain simple questions (equivalent to classification tasks), which lack semantic reasoning and clinical knowledge. Our previous work proposed a clinical knowledge-driven image difference VQA benchmark using a rule-based approach (Hu et al., 2023). However, given the same breadth of information coverage, the rule-based approach shows an 85% error rate on extracted labels. We trained an LLM method to extract labels with 62% increased accuracy. We also comprehensively evaluated our labels with 2 clinical experts on 100 samples to help us fine-tune the LLM. Based on the trained LLM model, we proposed a large-scale medical VQA dataset, Medical-CXR-VQA, using LLMs focused on chest X-ray images. The questions involved detailed information, such as abnormalities, locations, levels, and types. Based on this dataset, we proposed a novel VQA method by constructing three different relationship graphs: spatial relationships, semantic relationships, and implicit relationship graphs on the image regions, questions, and semantic labels. We leveraged graph attention to learn the logical reasoning paths for different questions. These learned graph VQA reasoning paths can be further used for LLM prompt engineering and chain-of-thought, which are crucial for further fine-tuning and training multi-modal large language models. Moreover, we demonstrate that our approach has the qualities of evidence and faithfulness, which are crucial in the clinical field. The code and the dataset is available at https://github.com/Holipori/Medical-CXR-VQA.

摘要

医学视觉问答 (VQA) 是医学多模态大型语言模型 (LLM) 中的一项重要任务,旨在回答有关输入医学图像的临床相关问题。这项技术有可能提高医疗专业人员的效率,同时减轻公共卫生系统的负担,特别是在资源匮乏的国家。然而,现有的医学 VQA 数据集规模较小,仅包含简单的问题(相当于分类任务),缺乏语义推理和临床知识。我们之前的工作提出了一种基于规则的临床知识驱动的图像差异 VQA 基准(Hu 等人,2023)。然而,在相同的信息覆盖广度下,基于规则的方法在提取标签时的错误率为 85%。我们训练了一种 LLM 方法来提取标签,其准确率提高了 62%。我们还与 2 位临床专家一起对 100 个样本进行了全面评估,以帮助我们对 LLM 进行微调。基于训练好的 LLM 模型,我们提出了一个大型医学 VQA 数据集 Medical-CXR-VQA,该数据集使用专注于胸部 X 光图像的 LLM。问题涉及详细信息,如异常、位置、级别和类型。基于这个数据集,我们提出了一种新的 VQA 方法,通过构建三个不同的关系图:空间关系、语义关系和图像区域、问题和语义标签上的隐式关系图。我们利用图注意力学习不同问题的逻辑推理路径。这些学习到的图 VQA 推理路径可以进一步用于 LLM 提示工程和思维链,这对于进一步微调和训练多模态大型语言模型至关重要。此外,我们证明了我们的方法具有证据和忠实度的特点,这在临床领域是至关重要的。代码和数据集可在 https://github.com/Holipori/Medical-CXR-VQA 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验