Suppr超能文献

基于条件推理和对比学习的医学视觉问答。

Medical Visual Question Answering via Conditional Reasoning and Contrastive Learning.

出版信息

IEEE Trans Med Imaging. 2023 May;42(5):1532-1545. doi: 10.1109/TMI.2022.3232411. Epub 2023 May 2.

Abstract

Medical visual question answering (Med-VQA) aims to accurately answer a clinical question presented with a medical image. Despite its enormous potential in healthcare services, the development of this technology is still in the initial stage. On the one hand, Med-VQA tasks are highly challenging due to the massive diversity of clinical questions that require different visual reasoning skills for different types of questions. On the other hand, medical images are complex in nature and very different from natural images, while current Med-VQA datasets are small-scale with a few hundred radiology images, making it difficult to train a well-performing visual feature extractor. This paper addresses above two critical issues. We propose a novel conditional reasoning mechanism with a question-conditioned reasoning component and a type-conditioned reasoning strategy to learn effective reasoning skills for different Med-VQA tasks adaptively. Further, we propose to pre-train a visual feature extractor for Med-VQA via contrastive learning on large amounts of unlabeled radiology images. The effectiveness of our proposals is validated by extensive experiments on existing Med-VQA benchmarks, which show significant improvement of our model in prediction accuracy over state-of-the-art methods. The source code and pre-training dataset are provided at https://github.com/Awenbocc/CPCR.

摘要

医学视觉问答 (Med-VQA) 的目标是准确回答呈现医学图像的临床问题。尽管它在医疗保健服务中具有巨大的潜力,但这项技术的发展仍处于起步阶段。一方面,由于临床问题的多样性很大,需要不同类型的问题具有不同的视觉推理技能,因此 Med-VQA 任务极具挑战性。另一方面,医学图像本质上很复杂,与自然图像有很大不同,而当前的 Med-VQA 数据集规模较小,只有几百张放射图像,因此很难训练出性能良好的视觉特征提取器。本文针对上述两个关键问题进行了研究。我们提出了一种新颖的条件推理机制,其中包括一个问题条件推理组件和一种类型条件推理策略,以自适应地学习不同 Med-VQA 任务的有效推理技能。此外,我们建议通过在大量未标记的放射图像上进行对比学习来预先训练 Med-VQA 的视觉特征提取器。我们的提案在现有的 Med-VQA 基准上进行了广泛的实验验证,结果表明我们的模型在预测准确性方面明显优于最先进的方法。代码和预训练数据集可在 https://github.com/Awenbocc/CPCR 上获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验