IDLab, Ghent University - Imec, Technologiepark-Zwijnaarde, 9052, Ghent, Belgium.
Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
Sci Rep. 2024 Jul 30;14(1):17545. doi: 10.1038/s41598-024-67767-3.
Chronic disease management and follow-up are vital for realizing sustained patient well-being and optimal health outcomes. Recent advancements in wearable technologies, particularly wrist-worn devices, offer promising solutions for longitudinal patient monitoring, replacing subjective, intermittent self-reporting with objective, continuous monitoring. However, collecting and analyzing data from wearables presents several challenges, such as data entry errors, non-wear periods, missing data, and wearable artifacts. In this work, we explore these data analysis challenges using two real-world datasets (mBrain21 and ETRI lifelog2020). We introduce practical countermeasures, including participant compliance visualizations, interaction-triggered questionnaires to assess personal bias, and an optimized pipeline for detecting non-wear periods. Additionally, we propose a visualization-oriented approach to validate processing pipelines using scalable tools such as tsflex and Plotly-Resampler. Lastly, we present a bootstrapping methodology to evaluate the variability of wearable-derived features in the presence of partially missing data segments. Prioritizing transparency and reproducibility, we provide open access to our detailed code examples, facilitating adaptation in future wearable research. In conclusion, our contributions provide actionable approaches for improving wearable data collection and analysis.
慢性病管理和随访对于实现患者的持续健康和最佳健康结果至关重要。可穿戴技术的最新进展,特别是腕戴式设备,为长期的患者监测提供了有前景的解决方案,用客观、连续的监测取代了主观、间歇性的自我报告。然而,从可穿戴设备中收集和分析数据存在一些挑战,例如数据录入错误、非佩戴期、数据缺失和可穿戴设备伪影。在这项工作中,我们使用两个真实世界的数据集(mBrain21 和 ETRI lifelog2020)来探索这些数据分析挑战。我们引入了实用的对策,包括参与者合规性可视化、交互触发的问卷来评估个人偏差,以及优化的非佩戴期检测管道。此外,我们提出了一种面向可视化的方法,使用 tsflex 和 Plotly-Resampler 等可扩展工具来验证处理管道。最后,我们提出了一种引导方法,用于评估在部分缺失数据段存在的情况下,可穿戴设备衍生特征的可变性。我们优先考虑透明度和可重复性,为详细的代码示例提供了开放访问,方便在未来的可穿戴研究中进行调整。总之,我们的贡献为改善可穿戴设备的数据收集和分析提供了可行的方法。