Suppr超能文献

使用加速度变化和温度变化率检测加速度计非佩戴期。

Detecting accelerometer non-wear periods using change in acceleration combined with rate-of-change in temperature.

机构信息

Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, 200 University Ave, Waterloo, ON, N2L 3G1, Canada.

出版信息

BMC Med Res Methodol. 2022 May 20;22(1):147. doi: 10.1186/s12874-022-01633-6.

Abstract

BACKGROUND

Accelerometery is commonly used to estimate physical activity, sleep, and sedentary behavior. In free-living conditions, periods of device removal (non-wear) can lead to misclassification of behavior with consequences for research outcomes and clinical decision making. Common methods for non-wear detection are limited by data transformations (e.g., activity counts) or algorithm parameters such as minimum durations or absolute temperature thresholds that risk over- or under-estimating non-wear time. This study aimed to advance non-wear detection methods by integrating a 'rate-of-change' criterion for temperature into a combined temperature-acceleration algorithm.

METHODS

Data were from 39 participants with neurodegenerative disease (36% female; age: 45-83 years) who wore a tri-axial accelerometer (GENEActiv) on their wrist 24-h per day for 7-days as part of a multi-sensor protocol. The reference dataset was derived from visual inspection conducted by two expert analysts. Linear regression was used to establish temperature rate-of-change as a criterion for non-wear detection. A classification and regression tree (CART) decision tree classifier determined optimal parameters separately for non-wear start and end detection. Classifiers were trained using data from 15 participants (38.5%). Outputs from the CART analysis were supplemented based on edge cases and published parameters.

RESULTS

The dataset included 186 non-wear periods (85.5% < 60 min). Temperature rate-of-change over the first five minutes of non-wear was - 0.40 ± 0.17 °C/minute and 0.36 ± 0.21 °C/minute for the first five minutes following device donning. Performance of the DETACH (DEvice Temperature and Accelerometer CHange) algorithm was improved compared to existing algorithms with recall of 0.942 (95% CI 0.883 to 1.0), precision of 0.942 (95% CI 0.844 to 1.0), F1-Score of 0.942 (95% CI 0.880 to 1.0) and accuracy of 0.996 (0.994-1.000).

CONCLUSION

The DETACH algorithm accurately detected non-wear intervals as short as five minutes; improving non-wear classification relative to current interval-based methods. Using temperature rate-of-change combined with acceleration results in a robust algorithm appropriate for use across different temperature ranges and settings. The ability to detect short non-wear periods is particularly relevant to free-living scenarios where brief but frequent removals occur, and for clinical application where misclassification of behavior may have important implications for healthcare decision-making.

摘要

背景

加速度计常用于估计身体活动、睡眠和久坐行为。在自由生活条件下,设备移除(非佩戴)的时间段可能导致行为分类错误,从而影响研究结果和临床决策。常用的非佩戴检测方法受到数据转换(例如,活动计数)或算法参数的限制,例如最小持续时间或绝对温度阈值,这些参数可能会导致非佩戴时间的过度或低估。本研究旨在通过将“变化率”标准纳入温度与加速度的综合算法,来改进非佩戴检测方法。

方法

数据来自 39 名患有神经退行性疾病的参与者(36%为女性;年龄:45-83 岁),他们在手腕上佩戴三轴加速度计(GENEActiv),每天 24 小时佩戴 7 天,作为多传感器方案的一部分。参考数据集来自两位专家分析人员的目视检查。使用线性回归建立温度变化率作为非佩戴检测的标准。分类和回归树(CART)决策树分类器分别为非佩戴开始和结束检测确定最佳参数。使用来自 15 名参与者(38.5%)的数据训练分类器。CART 分析的输出结果基于边缘情况和已发布的参数进行补充。

结果

数据集包括 186 个非佩戴时间段(85.5% < 60 分钟)。在非佩戴的前 5 分钟内,温度变化率为 -0.40 ± 0.17°C/分钟,在设备佩戴后的前 5 分钟内,温度变化率为 0.36 ± 0.21°C/分钟。与现有的算法相比,DETACH(设备温度和加速度变化)算法的性能得到了提高,召回率为 0.942(95%置信区间 0.883 至 1.0),精度为 0.942(95%置信区间 0.844 至 1.0),F1-评分为 0.942(95%置信区间 0.880 至 1.0),准确率为 0.996(0.994-1.000)。

结论

DETACH 算法可以准确检测到最短 5 分钟的非佩戴间隔;与当前基于间隔的方法相比,提高了非佩戴的分类准确性。使用温度变化率与加速度相结合,得到了一种稳健的算法,适用于不同温度范围和环境。检测短暂非佩戴期的能力对于自由生活场景尤其相关,在这些场景中,短暂但频繁的移除情况较为常见,对于临床应用,行为分类错误可能对医疗保健决策产生重要影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f44e/9123693/880a0b18f54e/12874_2022_1633_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验