Suppr超能文献

基于机器学习和综合生物信息学的炎症性肠病相关肌少症分子聚类的鉴定和免疫图谱。

Identification and immune landscape of sarcopenia-related molecular clusters in inflammatory bowel disease by machine learning and integrated bioinformatics.

机构信息

Department of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, Shanghai, 200001, China.

Department of Gastroenterology, Shanghai Punan Hospital of Pudong New District, Shanghai, China, 200120.

出版信息

Sci Rep. 2024 Jul 30;14(1):17603. doi: 10.1038/s41598-024-68198-w.

Abstract

Sarcopenia, a prevalent comorbidity of inflammatory bowel disease (IBD), is characterized by diminished skeletal muscle mass and strength. Nevertheless, the underlying interconnected mechanisms remain elusive. This study identified distinct expression patterns of sarcopenia-associated genes (SRGs) across individuals with IBD and in samples of normal tissue. By analyzing SRG expression profiles, we effectively segregated 541 IBD samples into three distinct clusters, each marked by its unique immune landscape. To unravel the transcriptional disruptions underlying these clusters, the Weighted Gene Co-expression Network Analysis (WGCNA) algorithm was employed to spotlight key genes linked to each cluster. A diagnostic model based on four key genes (TIMP1, PLAU, PHLDA1, TGFBI) was established using Random Forest and LASSO (least absolute shrinkage and selection operator) algorithms, and validated with the GSE179285 dataset. Moreover, the GSE112366 dataset facilitated the exploration of gene expression dynamics within the ileum mucosa of UC patients pre- and post-Ustekinumab treatment. Additionally, insights into the intricate relationship between immune cells and these pivotal genes were gleaned from the single-cell RNA dataset GSE162335. In conclusion, our findings collectively underscored the pivotal role of sarcopenia-related genes in the pathogenesis of IBD. Their potential as robust biomarkers for future diagnostic and therapeutic strategies is particularly promising, opening avenues for a deeper understanding and improved management of these interconnected conditions.

摘要

肌肉减少症是炎症性肠病(IBD)的一种常见合并症,其特征是骨骼肌质量和力量下降。然而,其潜在的相互关联的机制仍难以捉摸。本研究在 IBD 患者和正常组织样本中鉴定了与肌肉减少症相关的基因(SRGs)的不同表达模式。通过分析 SRG 表达谱,我们有效地将 541 个 IBD 样本分为三个不同的簇,每个簇都有其独特的免疫景观。为了揭示这些簇背后的转录中断,我们使用加权基因共表达网络分析(WGCNA)算法来突出与每个簇相关的关键基因。基于四个关键基因(TIMP1、PLAU、PHLDA1 和 TGFBI)的诊断模型是使用随机森林和 LASSO(最小绝对收缩和选择算子)算法建立的,并使用 GSE179285 数据集进行验证。此外,GSE112366 数据集还可以探索 UC 患者在乌司奴单抗治疗前后回肠黏膜内的基因表达动态。此外,还从单细胞 RNA 数据集 GSE162335 中了解到免疫细胞与这些关键基因之间的复杂关系。总之,我们的研究结果共同强调了与肌肉减少症相关的基因在 IBD 发病机制中的关键作用。它们作为未来诊断和治疗策略的强大生物标志物具有很大的潜力,为深入了解和改善这些相互关联的疾病提供了新的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/607f/11289443/ff005afafdc3/41598_2024_68198_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验