School of Earth System Science, Tianjin University, Tianjin, China.
Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA.
Nat Commun. 2024 Jul 30;15(1):6407. doi: 10.1038/s41467-024-50674-6.
Soil extractable nitrate, ammonium, and organic nitrogen (N) are essential N sources supporting primary productivity and regulating species composition of terrestrial plants. However, it remains unclear how plants utilize these N sources and how surface-earth environments regulate plant N utilization. Here, we establish a framework to analyze observational data of natural N isotopes in plants and soils globally, we quantify fractional contributions of soil nitrate (f), ammonium (f), and organic N (f) to plant-used N in soils. We find that mean annual temperature (MAT), not mean annual precipitation or atmospheric N deposition, regulates global variations of f, f, and f. The f increases with MAT, reaching 46% at 28.5 °C. The f also increases with MAT, achieving a maximum of 46% at 14.4 °C, showing a decline as temperatures further increase. Meanwhile, the f gradually decreases with MAT, stabilizing at about 20% when the MAT exceeds 15 °C. These results clarify global plant N-use patterns and reveal temperature rather than human N loading as a key regulator, which should be considered in evaluating influences of global changes on terrestrial ecosystems.
土壤可提取硝酸盐、铵和有机氮(N)是支持初级生产力和调节陆地植物物种组成的重要 N 源。然而,目前尚不清楚植物如何利用这些 N 源,以及地表环境如何调节植物对 N 的利用。在这里,我们建立了一个分析全球植物和土壤中天然 N 同位素观测数据的框架,量化了土壤硝酸盐(f)、铵(f)和有机氮(f)对土壤中植物利用 N 的相对贡献。我们发现,平均年度温度(MAT),而不是平均年度降水量或大气 N 沉积,调节着 f、f 和 f 的全球变化。f 随着 MAT 的升高而增加,在 28.5°C 时达到 46%。f 也随着 MAT 的升高而增加,在 14.4°C 时达到最大值 46%,随着温度进一步升高而下降。同时,f 随着 MAT 的升高逐渐降低,当 MAT 超过 15°C 时稳定在 20%左右。这些结果阐明了全球植物 N 利用模式,并揭示了温度而不是人为 N 负荷是关键调节因素,这在评估全球变化对陆地生态系统的影响时应予以考虑。