Han Zhiwei, Wang Jingyan, Zhang Xinyue, Li Yaning, He Biao
School of Safety Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
J Mol Model. 2024 Jul 30;30(8):292. doi: 10.1007/s00894-024-06094-w.
To investigate the influence of two typical nitro explosives, 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) and nitroguanidine (NQ), on the thermal decomposition mechanism of 3,4-Bis (3-nitrofurazan-4-yl) furoxan (DNTF). The study simulates the dynamical behavior of the DNTF/DNTF, DNTF/NQ, and DNTF/LLM-105 systems at different temperatures. We analyzed their thermal decomposition mechanisms through decomposition processes, reaction paths, and product evolution. Building on our analysis of thermal decomposition mechanisms, we found that introducing these two components (NQ and LLM-105) significantly alters the decomposition mechanism of DNTF. This introduction promotes the breakdown of DNTF molecules, modifies the thermal decomposition processes, and consequently changes the reaction pathways. In the DNTF/DNTF system, the product CNO remains stable, while the N-O bond in NO undergoes repeated breaking and formation, ultimately converting into NO. Conversely, in the mixed system, NO persists throughout the simulation, while the reaction product CNO undergoes additional reactions and eventually disappears at higher temperatures. This behavioral disparity determines distinct decomposition mechanisms between the mixed and pure DNTF systems.
To investigate the thermal decomposition mechanisms of DNTF/LLM-105 and DNTF/NQ composite energetic materials, the first-principles calculation software CP2K is used. The GFNI-xTB (Geometry, Frequency, and Noncovalent, eXtended Tight Binding) program within CP2K is employed. This method provides a powerful tool for performing calculations with arbitrary accuracy on complex systems.
研究两种典型的硝基炸药,2,6 - 二氨基 - 3,5 - 二硝基吡嗪 - 1 - 氧化物(LLM - 105)和硝基胍(NQ),对3,4 - 双(3 - 硝基呋咱 - 4 - 基)呋咱(DNTF)热分解机理的影响。该研究模拟了DNTF/DNTF、DNTF/NQ和DNTF/LLM - 105体系在不同温度下的动力学行为。我们通过分解过程、反应路径和产物演化分析了它们的热分解机理。基于对热分解机理的分析,我们发现引入这两种组分(NQ和LLM - 105)显著改变了DNTF的分解机理。这种引入促进了DNTF分子的分解,改变了热分解过程,从而改变了反应路径。在DNTF/DNTF体系中,产物CNO保持稳定,而NO中的N - O键经历反复断裂和形成,最终转化为NO。相反,在混合体系中,NO在整个模拟过程中持续存在,而反应产物CNO经历额外反应并最终在较高温度下消失。这种行为差异决定了混合体系和纯DNTF体系之间不同的分解机理。
为了研究DNTF/LLM - 105和DNTF/NQ复合含能材料的热分解机理,使用了第一性原理计算软件CP2K。采用CP2K中的GFNI - xTB(几何、频率和非共价,扩展紧束缚)程序。该方法为在复杂体系上进行任意精度的计算提供了强大工具。