Suppr超能文献

温度和压力对DNTF自扩散特性及力学敏感性的影响:一项分子动力学研究

The influence of temperature and pressure on the self-diffusion characteristics and mechanical sensitivity of DNTF: a molecular dynamics study.

作者信息

Li Chen, He Biao, Wang Jingyan, Li Yaning, Tang Linjing, Han Zhiwei

机构信息

School of Safety Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.

School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.

出版信息

J Mol Model. 2025 Jan 17;31(2):50. doi: 10.1007/s00894-024-06269-5.

Abstract

CONTEXT

3,4-Bis(3-nitrofurazan-4-yl) furoxan (DNTF) is a typical low-melting-point, high-energy-density compound that can serve as a cast carrier explosive. Therefore, understanding the safety of DNTF under different casting processes is of great significance for its efficient application. This study employed molecular dynamics simulations to investigate the effects of temperature and pressure on the self-diffusion characteristics and mechanical sensitivity of DNTF. The analysis focused on the mean square displacement, self-diffusion coefficient, cohesive energy density, non-bonded energy, and critical bond length of DNTF under various temperatures (250 to 450 K) and pressures (0.1 to 10 MPa). The results indicate that the self-diffusion coefficient and mechanical sensitivity of DNTF are more sensitive to changes in temperature. As the temperature increases, the self-diffusion behavior of DNTF accelerates, making it more volatile. This effect is particularly notable within the temperature range of 350 to 400 K, where the growth rate of the self-diffusion coefficient is significantly faster than in the 250 to 350 K range. The trigger bond length (L) gradually increases with rising temperature, accurately reflecting the objective trend that mechanical sensitivity increases with temperature. The results of this study provide a theoretical basis for the application of DNTF in high-energy materials, particularly in enhancing its safety.

METHODS

An 8 × 4 × 2 supercell model comprising 256 DNTF molecules was constructed in the Materials Studio 8.0 package. The DNTF supercell was geometrically relaxed using the conjugate gradient method. Subsequently, a 10-ps NPT molecular dynamics simulation was conducted on the supercell under conditions of 300 K and 0.1 MPa to relieve internal stresses, thereby obtaining DNTF crystals in the equilibrium state. NPT molecular dynamics simulations of the DNTF supercell were then carried out under the COMPASS force field at constant temperature. The temperatures were set to 250 K, 300 K, 350 K, 400 K, and 450 K, and the pressures were set to 0.1 MPa, 1 MPa, 3 MPa, 5 MPa, and 10 MPa. The total simulation time was 1000 ps with a time step of 1 fs. Every 1000 steps, information on mean square displacement, non-bonded energy, intermolecular forces, and critical bond length was recorded.

摘要

背景

3,4-双(3-硝基呋咱-4-基)呋咱(DNTF)是一种典型的低熔点、高能量密度化合物,可作为铸装载体炸药。因此,了解DNTF在不同铸造工艺下的安全性对其高效应用具有重要意义。本研究采用分子动力学模拟方法,研究温度和压力对DNTF自扩散特性和机械感度的影响。分析重点关注了DNTF在不同温度(250至450 K)和压力(0.1至10 MPa)下的均方位移、自扩散系数、内聚能密度、非键合能和临界键长。结果表明,DNTF的自扩散系数和机械感度对温度变化更为敏感。随着温度升高,DNTF的自扩散行为加速,使其挥发性增强。这种效应在350至400 K的温度范围内尤为显著,此时自扩散系数的增长率明显快于250至350 K的范围。触发键长(L)随温度升高逐渐增加,准确反映了机械感度随温度升高的客观趋势。本研究结果为DNTF在高能材料中的应用,特别是在提高其安全性方面提供了理论依据。

方法

在Materials Studio 8.0软件包中构建了一个包含256个DNTF分子的8×4×2超晶胞模型。使用共轭梯度法对DNTF超晶胞进行几何优化。随后,在300 K和0.1 MPa条件下对超晶胞进行10 ps的NPT分子动力学模拟,以消除内部应力,从而获得处于平衡态的DNTF晶体。然后在COMPASS力场下对DNTF超晶胞进行恒温NPT分子动力学模拟。温度设置为250 K、300 K、350 K、400 K和450 K,压力设置为0.1 MPa、1 MPa、3 MPa、5 MPa和10 MPa。总模拟时间为1000 ps,时间步长为1 fs。每1000步记录一次均方位移、非键合能、分子间力和临界键长的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验