Wei Jie, Tang Hua, Liu Yan, Liu Guiliang, Sheng Li, Fan Minghui, Ma Yiling, Zhang Zhirong, Zeng Jie
Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China.
Angew Chem Int Ed Engl. 2024 Oct 24;63(44):e202410520. doi: 10.1002/anie.202410520. Epub 2024 Sep 17.
The precise regulation of single-atom catalysts (SACs) with the desired local chemical environment is vital to elucidate the relationship between the SACs structure and the catalytic performance. The debate on the effect of the local coordination environment is quite complicated even for the SACs with the same composition and chemical nature, calling for increased attention on the regulation of the second coordination shell. For oxide-supported SACs, it remains a significant challenge to precisely manipulate the second coordination shell of single atoms supported on oxides due to the structural robustness of oxides. Here, Ir single atoms were anchored on NiO supports via different bonding strategies, resulting in the diverse Ir-O-Ni coordination numbers for Ir sites. Specifically, Ir/NiO, Ir-NiO, and Ir@NiO SACs with increasing Ir-O-Ni coordination numbers of 3, 4, and 5 were synthesized, respectively. We found that the activity of the three samples towards oxygen evolution reaction (OER) exhibited a volcano-shaped relationship with the Ir-O-Ni coordination number, with Ir-NiO showing the lowest overpotential of 225 mV at 10 mA cm. Mechanism investigations indicate that the moderate coordination number of Ir-O-Ni in Ir-NiO creates the higher occupied Ir d orbital, weakening the adsorption strength for *OOH intermediates and thereby enhancing the OER activity.
精确调控具有所需局部化学环境的单原子催化剂(SACs)对于阐明SACs结构与催化性能之间的关系至关重要。即使对于具有相同组成和化学性质的SACs,关于局部配位环境影响的争论也相当复杂,这就需要更多地关注第二配位层的调控。对于氧化物负载的SACs,由于氧化物的结构稳定性,精确操纵负载在氧化物上的单原子的第二配位层仍然是一个重大挑战。在此,通过不同的键合策略将Ir单原子锚定在NiO载体上,导致Ir位点的Ir-O-Ni配位数不同。具体而言,分别合成了Ir/NiO、Ir-NiO和Ir@NiO SACs,其Ir-O-Ni配位数依次增加,分别为3、4和5。我们发现,这三个样品对析氧反应(OER)的活性与Ir-O-Ni配位数呈现出火山形关系,其中Ir-NiO在10 mA cm时显示出最低过电位225 mV。机理研究表明,Ir-NiO中Ir-O-Ni的适度配位数产生了更高占据的Ir d轨道,减弱了对*OOH中间体的吸附强度,从而提高了OER活性。