Arnia Fitri, Saddami Khairun, Munadi Khairul
Department of Electrical and Computer Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia.
Telematics Research Center, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia.
J Imaging. 2021 Jul 12;7(7):114. doi: 10.3390/jimaging7070114.
Analysis of degraded ancient documents is challenging due to the severity and combination of degradation present in a single image. Ancient documents also suffer from additional noise during the digitalization process, particularly when digitalization is done using low-specification devices and/or under poor illumination conditions. The noises over the degraded ancient documents certainly cause a troublesome document analysis. In this paper, we propose a new noise-robust convolutional neural network (CNN) architecture for degradation classification of noisy ancient documents, which is called a degradation classification network (DCNet). DCNet was constructed based on the ResNet101, MobileNetV2, and ShuffleNet architectures. Furthermore, we propose a new self-transition layer following DCNet. We trained the DCNet using (1) noise-free document images and (2) heavy-noise (zero mean Gaussian noise (ZMGN) and speckle) document images. Then, we tested the resulted models with document images containing different levels of ZMGN and speckle noise. We compared our results to three CNN benchmarking architectures, namely MobileNet, ShuffleNet, and ResNet101. In general, the proposed architecture performed better than MobileNet, ShuffleNet, ResNet101, and conventional machine learning (support vector machine and random forest), particularly for documents with heavy noise.
由于单张图像中存在的降解严重程度和降解组合情况,对降解的古代文献进行分析具有挑战性。古代文献在数字化过程中还会受到额外噪声的影响,尤其是在使用低规格设备和/或在光照条件不佳的情况下进行数字化时。降解的古代文献上的噪声无疑给文献分析带来了麻烦。在本文中,我们提出了一种新的抗噪声卷积神经网络(CNN)架构,用于对有噪声的古代文献进行降解分类,该架构称为降解分类网络(DCNet)。DCNet是基于ResNet101、MobileNetV2和ShuffleNet架构构建的。此外,我们在DCNet之后提出了一种新的自过渡层。我们使用(1)无噪声文档图像和(2)重噪声(零均值高斯噪声(ZMGN)和斑点噪声)文档图像对DCNet进行了训练。然后,我们使用包含不同水平的ZMGN和斑点噪声的文档图像对所得模型进行了测试。我们将我们的结果与三种CNN基准架构,即MobileNet、ShuffleNet和ResNet101进行了比较。总体而言,所提出的架构比MobileNet、ShuffleNet、ResNet101和传统机器学习(支持向量机和随机森林)表现更好,特别是对于有重噪声的文档。