Akbarimajd Adel, Hoertel Nicolas, Hussain Mohammad Arafat, Neshat Ali Asghar, Marhamati Mahmoud, Bakhtoor Mahdi, Momeny Mohammad
Department of Electrical and Computer Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.
AP-HP.Centre, Département Médico-Universitaire de Psychiatrie et Addictologie, Hôpital Corentin-Celton, 92130 Issy-les-Moulineaux, France.
J Comput Sci. 2022 Sep;63:101763. doi: 10.1016/j.jocs.2022.101763. Epub 2022 Jul 7.
Deep convolutional neural networks (CNNs) are used for the detection of COVID-19 in X-ray images. The detection performance of deep CNNs may be reduced by noisy X-ray images. To improve the robustness of a deep CNN against impulse noise, we propose a novel CNN approach using adaptive convolution, with the aim to ameliorate COVID-19 detection in noisy X-ray images without requiring any preprocessing for noise removal. This approach includes an impulse noise-map layer, an adaptive resizing layer, and an adaptive convolution layer to the conventional CNN framework. We also used a learning-to-augment strategy using noisy X-ray images to improve the generalization of a deep CNN. We have collected a dataset of 2093 chest X-ray images including COVID-19 (452 images), non-COVID pneumonia (621 images), and healthy ones (1020 images). The architecture of pre-trained networks such as SqueezeNet, GoogleNet, MobileNetv2, ResNet18, ResNet50, ShuffleNet, and EfficientNetb0 has been modified to increase their robustness to impulse noise. Validation on the noisy X-ray images using the proposed noise-robust layers and learning-to-augment strategy-incorporated ResNet50 showed 2% better classification accuracy compared with state-of-the-art method.
深度卷积神经网络(CNN)用于在X射线图像中检测新型冠状病毒肺炎(COVID-19)。嘈杂的X射线图像可能会降低深度CNN的检测性能。为了提高深度CNN对脉冲噪声的鲁棒性,我们提出了一种使用自适应卷积的新型CNN方法,旨在改善在嘈杂X射线图像中的COVID-19检测,而无需任何去除噪声的预处理。该方法在传统的CNN框架中包括一个脉冲噪声映射层、一个自适应调整大小层和一个自适应卷积层。我们还使用了一种利用嘈杂X射线图像的学习增强策略来提高深度CNN的泛化能力。我们收集了一个包含2093张胸部X射线图像的数据集,其中包括新型冠状病毒肺炎(452张图像)、非新型冠状病毒肺炎(621张图像)和健康图像(1020张图像)。诸如SqueezeNet、GoogleNet、MobileNetv2、ResNet18、ResNet50、ShuffleNet和EfficientNetb0等预训练网络的架构已被修改,以提高它们对脉冲噪声的鲁棒性。使用所提出的抗噪声层和结合学习增强策略的ResNet50在嘈杂X射线图像上进行验证,结果表明与现有方法相比,分类准确率提高了2%。