Suppr超能文献

结合学习增强的抗噪声深度卷积神经网络用于在噪声X射线图像中检测新冠肺炎

Learning-to-augment incorporated noise-robust deep CNN for detection of COVID-19 in noisy X-ray images.

作者信息

Akbarimajd Adel, Hoertel Nicolas, Hussain Mohammad Arafat, Neshat Ali Asghar, Marhamati Mahmoud, Bakhtoor Mahdi, Momeny Mohammad

机构信息

Department of Electrical and Computer Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.

AP-HP.Centre, Département Médico-Universitaire de Psychiatrie et Addictologie, Hôpital Corentin-Celton, 92130 Issy-les-Moulineaux, France.

出版信息

J Comput Sci. 2022 Sep;63:101763. doi: 10.1016/j.jocs.2022.101763. Epub 2022 Jul 7.

Abstract

Deep convolutional neural networks (CNNs) are used for the detection of COVID-19 in X-ray images. The detection performance of deep CNNs may be reduced by noisy X-ray images. To improve the robustness of a deep CNN against impulse noise, we propose a novel CNN approach using adaptive convolution, with the aim to ameliorate COVID-19 detection in noisy X-ray images without requiring any preprocessing for noise removal. This approach includes an impulse noise-map layer, an adaptive resizing layer, and an adaptive convolution layer to the conventional CNN framework. We also used a learning-to-augment strategy using noisy X-ray images to improve the generalization of a deep CNN. We have collected a dataset of 2093 chest X-ray images including COVID-19 (452 images), non-COVID pneumonia (621 images), and healthy ones (1020 images). The architecture of pre-trained networks such as SqueezeNet, GoogleNet, MobileNetv2, ResNet18, ResNet50, ShuffleNet, and EfficientNetb0 has been modified to increase their robustness to impulse noise. Validation on the noisy X-ray images using the proposed noise-robust layers and learning-to-augment strategy-incorporated ResNet50 showed 2% better classification accuracy compared with state-of-the-art method.

摘要

深度卷积神经网络(CNN)用于在X射线图像中检测新型冠状病毒肺炎(COVID-19)。嘈杂的X射线图像可能会降低深度CNN的检测性能。为了提高深度CNN对脉冲噪声的鲁棒性,我们提出了一种使用自适应卷积的新型CNN方法,旨在改善在嘈杂X射线图像中的COVID-19检测,而无需任何去除噪声的预处理。该方法在传统的CNN框架中包括一个脉冲噪声映射层、一个自适应调整大小层和一个自适应卷积层。我们还使用了一种利用嘈杂X射线图像的学习增强策略来提高深度CNN的泛化能力。我们收集了一个包含2093张胸部X射线图像的数据集,其中包括新型冠状病毒肺炎(452张图像)、非新型冠状病毒肺炎(621张图像)和健康图像(1020张图像)。诸如SqueezeNet、GoogleNet、MobileNetv2、ResNet18、ResNet50、ShuffleNet和EfficientNetb0等预训练网络的架构已被修改,以提高它们对脉冲噪声的鲁棒性。使用所提出的抗噪声层和结合学习增强策略的ResNet50在嘈杂X射线图像上进行验证,结果表明与现有方法相比,分类准确率提高了2%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dba/9259198/0645540adbd8/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验