Wu Weijian, Fan Jianfeng, Zeng Chen, Cheng Xiaxia, Liu Xiaowei, Guo Shifeng, Sun Rong, Ren Linlin, Hao Zhifeng, Zeng Xiaoliang
State Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
Adv Mater. 2024 Oct;36(40):e2403661. doi: 10.1002/adma.202403661. Epub 2024 Jul 30.
Soft elastomer composites are promising functional materials for engineer interfaces, where the miniaturized electronic devices have triggered increasing demand for effective heat dissipation, high fracture energy, and antifatigue fracture. However, such a combination of these properties can be rarely met in the same elastomer composites simultaneously. Here a strategy is presented to fabricate a soft, extreme fracture tough (3316 J m) and antifatigue fracture (1052.56 J m⁻) polydimethylsiloxane/aluminum elastomer composite. These outstanding properties are achieved by optimizing the dangling chains and spherical aluminum fillers, resulting in the combined effects of crack pinning and interfacial slippage. The dangling chains that lengthen the polymer chains between cross-linked points pin the cracks and the rigid fillers obstruct the cracks, enhancing the energy per unit area needed for fatigue failure. The dangling chains also promote polymer/filler interfacial slippage, enabling effective deflection and blunting of an advancing crack tip, thus enhancing mechanical energy dissipation. Moreover, the elastomer composite exhibits low thermal resistance (≈0.12 K cm W), due to the formation of a thermally conductive network. These remarkable characteristics render this elastomer composite promising for application as a thermal interface material in electronic devices.
软质弹性体复合材料是用于工程界面的有前途的功能材料,在工程界面中,小型化电子设备引发了对有效散热、高断裂能和抗疲劳断裂的需求不断增加。然而,在同一弹性体复合材料中很少能同时满足这些性能的组合。本文提出了一种策略,用于制备一种柔软、具有极高断裂韧性(3316 J/m²)和抗疲劳断裂性能(1052.56 J/m²)的聚二甲基硅氧烷/铝弹性体复合材料。通过优化悬垂链和球形铝填料实现了这些优异性能,从而产生了裂纹钉扎和界面滑移的综合效果。交联点之间延长聚合物链的悬垂链会钉扎裂纹,刚性填料会阻碍裂纹,从而提高疲劳失效所需的单位面积能量。悬垂链还促进聚合物/填料界面滑移,使前进的裂纹尖端能够有效偏转和钝化,从而增强机械能耗散。此外,由于形成了导热网络,该弹性体复合材料表现出低热阻(≈0.12 K·cm²/W)。这些显著特性使这种弹性体复合材料有望用作电子设备中的热界面材料。