Suppr超能文献

与3D动作捕捉相比,FullTrack人工智能应用程序用于确定板球投球线路和长度的可靠性和有效性。

Reliability and validity of the fulltrack AI application to determine cricket bowling line and length compared to 3D motion capture.

作者信息

Tissera Kevin, Shorter Kathleen A, Huynh Minh, Benson Amanda C

机构信息

Department of Health Sciences and Biostatistics, School of Health Sciences; Sport Innovation Research Group, Swinburne University of Technology, Melbourne, Australia.

Allied Health and Human Performance, University of South Australia, Adelaide, Australia.

出版信息

Sports Biomech. 2024 Jul 30:1-17. doi: 10.1080/14763141.2024.2381108.

Abstract

This study examined reliability and validity of the application to identify cricket ball landing position (line, length). Nine hundred and thirty-two deliveries were compared to 3D motion capture, the criterion measure, with 836 included in analysis (516 bowled (pace = 420, spin = 96), 320 Sidearm; 301 facing a batter). Agreement analysis indicated an intraclass correlation coefficient of >0.96 for raw and filter 3D line and length data, compared to . The coefficient of variation was acceptable for length (<10%) and larger for line (23.82%), albeit with a smaller standard error of measurement (SEM = 0.05 m), improving with outliers removed. Bland-Altman plots confirmed good statistical agreement between devices, with limits of agreement largely within maximal allowable difference values. There are potential practical application considerations, given SEM = 0.47 m for length (diameter of seven cricket balls); with greater variability detecting length closer to the batters-end, and line closer to the bowlers-end. Validity, using a generalised additive model, showed no significant differences between devices ( > 0.05), with no condition-based interaction effects. The application enables ecologically valid assessment of bowling performance. Considering the trade-off between this and the accuracy of information is warranted when deciding how best to apply it to coaching environments to support augmented feedback.

摘要

本研究检验了用于识别板球落球位置(线路、长度)的应用程序的可靠性和有效性。将932次投球与作为标准测量方法的三维动作捕捉进行比较,分析纳入了836次投球(516次常规投球(快速球 = 420次,旋转球 = 96次),320次侧臂投球;301次面对击球手)。一致性分析表明,原始和经过滤波的三维线路和长度数据的组内相关系数均>0.96。长度的变异系数可接受(<10%),线路的变异系数较大(23.82%),不过测量标准误差较小(SEM = 0.05米),去除异常值后有所改善。布兰德 - 奥特曼图证实了不同设备之间具有良好的统计学一致性,一致性界限大多在最大允许差值范围内。考虑到长度的SEM为0.47米(七个板球的直径),在靠近击球手一端检测长度时变异性更大,在靠近投球手一端检测线路时变异性更大,因此存在一些潜在的实际应用考量。使用广义相加模型进行的效度分析表明,不同设备之间无显著差异(>0.05),不存在基于条件的交互作用效应。该应用程序能够对投球表现进行生态效度评估。在决定如何最好地将其应用于教练环境以支持增强反馈时,有必要权衡此应用与信息准确性之间的关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验