Suppr超能文献

可变形曲面的起皱。

Wrinkling of fluid deformable surfaces.

机构信息

Institute of Scientific Computing, TU Dresden, 01062 Dresden, Germany.

Center of Systems Biology Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany.

出版信息

J R Soc Interface. 2024 Jul;21(216):20240056. doi: 10.1098/rsif.2024.0056. Epub 2024 Jul 31.

Abstract

Wrinkling instabilities of thin elastic sheets can be used to generate periodic structures over a wide range of length scales. Viscosity of the thin elastic sheet or its surrounding medium has been shown to be responsible for dynamic processes. We here consider wrinkling of fluid deformable surfaces. In contrast with thin elastic sheets, with in-plane and out-of-plane elasticity, these surfaces are characterized by in-plane viscous flow and out-of-plane elasticity and have been established as model systems for biomembranes and cellular sheets. We use this hydrodynamic theory and numerically explore the formation of wrinkles and their coarsening, either by a continuous reduction of the enclosed volume or by the continuous increase of the surface area. Both lead to almost identical results for wrinkle formation and the coarsening process, for which a scaling law for the wavenumber is obtained for a broad range of surface viscosity and rate of change of volume or area. However, for large Reynolds numbers and small changes in volume or area, wrinkling can be suppressed and surface hydrodynamics allows for global shape changes following the minimal energy configurations of the Helfrich energy for corresponding reduced volumes.

摘要

薄弹性片的起皱不稳定性可用于在广泛的长度尺度上生成周期性结构。薄弹性片或其周围介质的粘性已被证明是导致动力学过程的原因。我们在这里考虑可变形流体表面的起皱。与具有面内和面外弹性的薄弹性片不同,这些表面的特征在于面内粘性流动和面外弹性,并且已经确立为生物膜和细胞片的模型系统。我们使用这种流体动力学理论并通过连续减小封闭体积或连续增加表面积来数值探索皱纹的形成及其粗化。这两种方法对于褶皱的形成和粗化过程都产生了几乎相同的结果,对于宽范围的表面粘性和体积或面积的变化率,获得了波数的标度定律。然而,对于大雷诺数和体积或面积的小变化,起皱可以被抑制,并且表面流体动力学允许根据对应于减小的体积的 Helfrich 能量的最小能量配置进行全局形状变化。

相似文献

1
Wrinkling of fluid deformable surfaces.可变形曲面的起皱。
J R Soc Interface. 2024 Jul;21(216):20240056. doi: 10.1098/rsif.2024.0056. Epub 2024 Jul 31.

本文引用的文献

4
Dynamics of wrinkling in ultrathin elastic sheets.超薄弹性薄板的皱缩动力学。
Proc Natl Acad Sci U S A. 2019 Oct 15;116(42):20875-20880. doi: 10.1073/pnas.1905755116. Epub 2019 Sep 30.
7
Buckling of viscous filaments of a fluid under compression stresses.受压应力下粘性纤维的屈曲。
Phys Rev Lett. 2012 Aug 10;109(6):064502. doi: 10.1103/PhysRevLett.109.064502.
8
Prototypical model for tensional wrinkling in thin sheets.薄板拉伸起皱的原型模型。
Proc Natl Acad Sci U S A. 2011 Nov 8;108(45):18227-32. doi: 10.1073/pnas.1108553108. Epub 2011 Oct 31.
9
Hydrodynamics in curved membranes: the effect of geometry on particulate mobility.弯曲膜中的流体动力学:几何形状对颗粒迁移率的影响。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jan;81(1 Pt 1):011905. doi: 10.1103/PhysRevE.81.011905. Epub 2010 Jan 12.
10
Relaxation dynamics of fluid membranes.流体膜的弛豫动力学
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Mar;79(3 Pt 1):031915. doi: 10.1103/PhysRevE.79.031915. Epub 2009 Mar 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验