Suppr超能文献

Type B Uncertainty Analysis of Gravity-Based Determinations of Triaxial-Accelerometer Properties by Simulation of Measurement Errors.

作者信息

Geist Jon, Gaitan Michael

机构信息

National Institute of Standards and Technology, Gaithersburg, MD 20899 USA.

出版信息

J Res Natl Inst Stand Technol. 2022 Jan 22;126:126038. doi: 10.6028/jres.126.038. eCollection 2021.

Abstract

We simulated the effects of gimbal-alignment errors and rotational step-size errors on measurements of the sensitivity matrix and intrinsic properties of a triaxial accelerometer. We restricted the study to measurements carried out on a two-axis calibration system using a previously described measurement and analysis protocol. As well as imperfections in the calibration system, we simulated imperfect orthogonality of the accelerometer axes and non-identical sensitivity of the individual accelerometers in an otherwise perfect triaxial accelerometer, but we left characterization of other accelerometer imperfections such as non-linearity for future study. Within this framework, sensitivity-matrix errors are caused by imperfections in the construction and installation of the accelerometer calibration system, but not by the accelerometer imperfections included in the simulations. We use the results of this study to assign type B uncertainties to the components of the sensitivity matrix and related intrinsic properties due to imperfections in the measurement system. For calibrations using a reasonably well manufactured and installed multi-axis rotation stage such as that studied in this paper, we estimated upper bounds to the standard uncertainties of the order of 1×10-5, 2×10-5, 5×10-5, and 2×10-4 for the intrinsic sensitivities, diagonal elements of the sensitivity matrix, off-diagonal elements of the sensitivity matrix, and zero-acceleration offsets, relative to a sensitivity-matrix element of 1, respectively, and 5×10-3 degrees for the intrinsic angles.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ccb/11249360/7dec8084c4cc/jres-Image002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验