文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

FericipXT-coated PEGylated rutile TiO nanoparticles in drug delivery: assessment of imatinib release.

作者信息

Bhullar Shilpy, Goyal Navdeep, Gupta Shikha

机构信息

Department of Physics, Centre of Advanced Study in Physics, Panjab University Chandigarh India.

Schepens Eye Research Institute (MEEI - Harvard Medical School) Boston Massachusetts USA

出版信息

RSC Adv. 2024 Jul 30;14(33):23886-23901. doi: 10.1039/d4ra02439g. eCollection 2024 Jul 26.


DOI:10.1039/d4ra02439g
PMID:39081656
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11288344/
Abstract

This study presents a facile synthesis strategy for magnetic field-responsive PEGylated iron-supplement-coated rutile titanium dioxide (TiO) nanoparticles (NPs) for stimulus-responsive drug delivery. Imatinib, an anticancer drug, was successfully loaded into NPs, and its release was investigated under different pH conditions. XRD analysis confirmed the successful synthesis of PEGylated iron supplement-coated rutile titania NPs. HR-TEM studies revealed an increased NP size due to the coating, PEGylation, and drug loading, which was corroborated by FTIR spectra, confirming the drug loading into the NPs. DLS provided a hydrodynamic diameter of 642.2 nm and polydispersity index of 0.277 for PEGylated NPs, indicating their enhanced biodistribution and narrow size distribution. PEGylated NPs exhibited a negative zeta potential of -32.89 mV, indicating high stability. drug-release studies demonstrated controlled release with maximum efficiency under acidic conditions. Hemolysis assay confirmed the safety and biocompatibility of PEGylated NPs. All drug-loaded nanoformulations followed the Peppas-Sahlin model, suggesting Fickian diffusion and Case II relaxation mechanism of drug release. These NPs have the potential for the targeted delivery and controlled release of chemotherapeutics, thereby minimizing side effects.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc2/11288344/721c304c0100/d4ra02439g-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc2/11288344/d6d1fd90bd91/d4ra02439g-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc2/11288344/eb00ae30aa8f/d4ra02439g-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc2/11288344/2b138e9813b8/d4ra02439g-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc2/11288344/d03819aa359e/d4ra02439g-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc2/11288344/5fcefcabb77a/d4ra02439g-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc2/11288344/f3181bdc7211/d4ra02439g-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc2/11288344/ca9da8e44488/d4ra02439g-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc2/11288344/ac9d942b5eb2/d4ra02439g-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc2/11288344/187662cac11e/d4ra02439g-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc2/11288344/940264cb8d4d/d4ra02439g-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc2/11288344/851501f42934/d4ra02439g-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc2/11288344/721c304c0100/d4ra02439g-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc2/11288344/d6d1fd90bd91/d4ra02439g-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc2/11288344/eb00ae30aa8f/d4ra02439g-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc2/11288344/2b138e9813b8/d4ra02439g-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc2/11288344/d03819aa359e/d4ra02439g-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc2/11288344/5fcefcabb77a/d4ra02439g-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc2/11288344/f3181bdc7211/d4ra02439g-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc2/11288344/ca9da8e44488/d4ra02439g-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc2/11288344/ac9d942b5eb2/d4ra02439g-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc2/11288344/187662cac11e/d4ra02439g-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc2/11288344/940264cb8d4d/d4ra02439g-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc2/11288344/851501f42934/d4ra02439g-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc2/11288344/721c304c0100/d4ra02439g-f12.jpg

相似文献

[1]
FericipXT-coated PEGylated rutile TiO nanoparticles in drug delivery: assessment of imatinib release.

RSC Adv. 2024-7-30

[2]
Synthesizing and Optimizing Rutile TiO Nanoparticles for Magnetically Guided Drug Delivery.

Int J Nanomedicine. 2022

[3]
In-vitro pH-responsive release of imatinib from iron-supplement coated anatase TiO nanoparticles.

Sci Rep. 2022-3-17

[4]
Oseltamivir phosphate loaded pegylated-Eudragit nanoparticles for lung cancer therapy: Characterization, prolonged release, cytotoxicity profile, apoptosis pathways and in vivo anti-angiogenic effect by using CAM assay.

Microvasc Res. 2022-1

[5]
Magnetically controlled drug delivery and hyperthermia effects of core-shell Cu@MnO nanoparticles towards cancer cells in vitro.

Int J Biol Macromol. 2023-9-30

[6]
-Mediated Synthesis and Characterizations of Ciprofloxacin Encapsulated into Ag/TiO/FeO/CS Nanocomposite: A Therapeutic Solution against Multidrug Resistant Strains of Livestock Infectious Diseases.

Pharmaceutics. 2022-8-17

[7]
Nanoparticles Obtained from Zein for Encapsulation of Mesalazine.

Pharmaceutics. 2022-12-16

[8]
Preparation of doxorubicin-loaded collagen-PAPBA nanoparticles and their anticancer efficacy in ovarian cancer.

Ann Transl Med. 2020-7

[9]
Building and behavior of a pH-stimuli responsive chitosan nanoparticles loaded with folic acid conjugated gemcitabine silver colloids in MDA-MB-453 metastatic breast cancer cell line and pharmacokinetics in rats.

Eur J Pharm Sci. 2021-10-1

[10]
Quercetin Loaded Silica and Gold - Coated Silica Nanoparticles: Characterization, Evaluation and Comparison of Their in vitro Characteristics.

J Pharm Sci. 2023-6

引用本文的文献

[1]
Nanotechnology in Imatinib delivery: advancing cancer treatment through innovative nanoparticles.

Med Oncol. 2025-3-18

[2]
A Review on Medicinal Approaches of Novel Imatinib Derivatives.

Curr Top Med Chem. 2025

[3]
Metal Oxide Nanoparticles as Efficient Nanocarriers for Targeted Cancer Therapy: Addressing Chemotherapy-Induced Disabilities.

Cancers (Basel). 2024-12-19

本文引用的文献

[1]
Titanium dioxide nanostructure-loaded Adriamycin surmounts resistance in breast cancer therapy: ABCA/P53/C-myc crosstalk.

Future Sci OA. 2024-5-15

[2]
Targeted delivery of temozolomide by nanocarriers based on folic acid-hollow TiO -nanospheres for the treatment of glioblastoma.

Biomater Adv. 2023-8

[3]
Synthesizing and Optimizing Rutile TiO Nanoparticles for Magnetically Guided Drug Delivery.

Int J Nanomedicine. 2022

[4]
In-vitro pH-responsive release of imatinib from iron-supplement coated anatase TiO nanoparticles.

Sci Rep. 2022-3-17

[5]
Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems.

Emergent Mater. 2022

[6]
Association between gene polymorphism and adverse effects in cancer patients receiving docetaxel treatment: a meta-analysis.

Cancer Chemother Pharmacol. 2022-2

[7]
Targeted drug delivery strategies for precision medicines.

Nat Rev Mater. 2021-4

[8]
Advances in Delivery of Chemotherapeutic Agents for Cancer Treatment.

AAPS PharmSciTech. 2021-12-14

[9]
Influence of nanoparticle size on blood-brain barrier penetration and the accumulation of anti-seizure medicines in the brain.

J Mater Chem B. 2022-1-5

[10]
Targeted Drug Delivery - From Magic Bullet to Nanomedicine: Principles, Challenges, and Future Perspectives.

J Multidiscip Healthc. 2021-7-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索