Suppr超能文献

银/二氧化钛/氧化亚铁/壳聚糖纳米复合材料介导的环丙沙星包封的合成与表征:一种针对家畜传染病多药耐药菌株的治疗解决方案

-Mediated Synthesis and Characterizations of Ciprofloxacin Encapsulated into Ag/TiO/FeO/CS Nanocomposite: A Therapeutic Solution against Multidrug Resistant Strains of Livestock Infectious Diseases.

作者信息

Zafar Naheed, Uzair Bushra, Menaa Farid, Khan Barkat Ali, Niazi Muhammad Bilal Khan, Alaryani Fatima S, Majrashi Kamlah Ali, Sajjad Shamaila

机构信息

Department of Biological Sciences, International Islamic University Islamabad, Islamabad 44000, Pakistan.

Department of Internal Medicine and Nanomedicine, California Innovations Corporation, San Diego, CA 92037, USA.

出版信息

Pharmaceutics. 2022 Aug 17;14(8):1719. doi: 10.3390/pharmaceutics14081719.

Abstract

Background: Multidrug resistant MDR bacterial strains are causing fatal infections, such as mastitis. Thus, there is a need for the development of new target-oriented antimicrobials. Nanomaterials have many advantages over traditional antibiotics, including improved stability, controlled antibiotic release, targeted administration, enhanced bioavailability, and the use of antibiotic-loaded nanomaterials, such as the one herein reported for the first time, appear to be a promising strategy to combat antibiotic-resistant bacteria. The use of rationally designed metallic nanocomposites, rather than the use of single metallic nanoparticles (NPs), should further minimize the bacterial resistance. Aim: Green synthesis of a multimetallic/ternary nanocomposite formed of silver (Ag), titanium dioxide (TiO2), and iron(III) oxide (Fe2O3), conjugated to chitosan (CS), in which the large spectrum fluoroquinolone antibiotic ciprofloxacin (CIP) has been encapsulated. Methods: The metallic nanoparticles (NPs) Ag NPs, TiO2 NPs, and Fe2O3 NPs were synthesized by reduction of Moringa concanensis leaf aqueous extract. The ternary junction was obtained by wet chemical impregnation technique. CIP was encapsulated into the ternary nanocomposite Ag/TiO2/Fe2O3, followed by chitosan (CS) conjugation using the ionic gelation method. The resulting CS-based nanoparticulate drug delivery system (NDDS), i.e., CIP-Ag/TiO2/Fe2O3/CS, was characterized in vitro by gold standard physical techniques such as X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM), Fourier-transform infrared (FTIR) spectroscopy. Pharmacological analyses (i.e., LC, EE, ex-vivo drug release behavior) were also assessed. Further, biological studies were carried out both ex vivo (i.e., by disk diffusion method (DDM), fluorescence-activated single cell sorting (FACS), MTT assay) and in vivo (i.e., antibacterial activity in a rabbit model, colony-forming unit (CFU) on blood agar, histopathological analysis using H&E staining). Results: The encapsulation efficiency (EE) and the loading capacity (LC) of the NDDS were as high as 94% ± 1.26 and 57% ± 3.5, respectively. XRD analysis confirmed the crystalline nature of the prepared formulation. FESEM revealed nanorods with an average diameter of 50−70 ± 12 nm. FTIR confirmed the Fe-O-Ti-CS linkages as well as the successful encapsulation of CIP into the NDDS. The zeta potential (ZP) of the NDDS was determined as 85.26 ± 0.12 mV. The antimicrobial potential of the NDDS was elicited by prominent ZIs against MDR E. coli (33 ± 1.40 mm) at the low MIC of 0.112 μg/mL. Morphological alterations (e.g., deformed shape and structural damages) of MDR pathogens were clearly visible overtime by FESEM after treatment with the NDDS at MIC value, which led to the cytolysis ultimately. FACS analysis confirmed late apoptotic of the MDR E. coli (80.85%) after 6 h incubation of the NDDS at MIC (p < 0.05 compared to untreated MDR E. coli used as negative control). The highest drug release (89% ± 0.57) was observed after 8 h using PBS medium at pH 7.4. The viability of bovine mammary gland epithelial cells (BMGE) treated with the NDDS remained superior to 90%, indicating a negligible cytotoxicity (p < 0.05). In the rabbit model, in which infection was caused by injecting MDR E. coli intraperitoneally (IP), no colonies were detected after 72 h of treatment. Importantly, the histopathological analysis showed no changes in the vital rabbit organs in the treated group compared to the untreated group. Conclusions: Taken together, the newly prepared CIP-Ag/TiO2/Fe2O3/CS nanoformulation appears safe, biocompatible, and therapeutically active to fight MDR E. coli strains-causing mastitis.

摘要

背景

多重耐药(MDR)细菌菌株正在引发致命感染,如乳腺炎。因此,需要开发新的靶向抗菌药物。纳米材料相对于传统抗生素具有许多优势,包括稳定性提高、抗生素释放可控、靶向给药、生物利用度增强,并且使用负载抗生素的纳米材料,如本文首次报道的材料,似乎是对抗抗生素耐药细菌的一种有前景的策略。使用合理设计的金属纳米复合材料,而非单一金属纳米颗粒(NPs),应能进一步降低细菌耐药性。目的:绿色合成由银(Ag)、二氧化钛(TiO2)和氧化铁(III)(Fe2O3)形成的多金属/三元纳米复合材料,并与壳聚糖(CS)共轭,其中已包封了广谱氟喹诺酮抗生素环丙沙星(CIP)。方法:通过辣木叶片水提取物的还原反应合成金属纳米颗粒(NPs)银纳米颗粒、二氧化钛纳米颗粒和氧化铁纳米颗粒。通过湿化学浸渍技术获得三元结。将CIP包封到三元纳米复合材料Ag/TiO2/Fe2O3中,然后使用离子凝胶法进行壳聚糖(CS)共轭。所得基于CS的纳米颗粒药物递送系统(NDDS),即CIP-Ag/TiO2/Fe2O3/CS,通过X射线衍射(XRD)、场发射扫描电子显微镜(FESEM)、傅里叶变换红外(FTIR)光谱等金标准物理技术进行体外表征。还评估了药理学分析(即包封率、载药量、体外药物释放行为)。此外,进行了体外(即通过纸片扩散法(DDM)、荧光激活单细胞分选(FACS)、MTT法)和体内(即在兔模型中的抗菌活性、血琼脂上的菌落形成单位(CFU)、使用苏木精和伊红染色的组织病理学分析)生物学研究。结果:NDDS的包封率(EE)和载药量(LC)分别高达94%±1.26和57%±3.5。XRD分析证实了所制备制剂的晶体性质。FESEM显示平均直径为50−70±12nm的纳米棒。FTIR证实了Fe-O-Ti-CS键以及CIP成功包封到NDDS中。NDDS的zeta电位(ZP)测定为85.26±0.12mV。NDDS在0.112μg/mL的低最低抑菌浓度(MIC)下对MDR大肠杆菌具有显著的抑菌圈(33±1.40mm),从而展现出抗菌潜力。在MIC值下用NDDS处理后,通过FESEM可清楚地看到MDR病原体随时间出现形态改变(如形状变形和结构损伤),最终导致细胞溶解。FACS分析证实在MIC下用NDDS孵育6小时后MDR大肠杆菌出现晚期凋亡(80.85%)(与用作阴性对照的未处理MDR大肠杆菌相比,p<0.05)。在pH7.4的PBS培养基中孵育8小时后观察到最高药物释放率(89%±0.57)。用NDDS处理的牛乳腺上皮细胞(BMGE)的活力保持在90%以上,表明细胞毒性可忽略不计(p<0.05)。在兔模型中,通过腹腔注射(IP)MDR大肠杆菌引起感染,治疗72小时后未检测到菌落。重要的是,组织病理学分析显示与未治疗组相比,治疗组中兔的重要器官无变化。结论:综上所述,新制备的CIP-Ag/TiO2/Fe2O3/CS纳米制剂似乎安全、具有生物相容性且对对抗引起乳腺炎的MDR大肠杆菌菌株具有治疗活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1cf/9412270/c4d71d396602/pharmaceutics-14-01719-sch001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验