Guido Roberto, Wang Xuetao, Xu Bohan, Alcala Ruben, Mikolajick Thomas, Schroeder Uwe, Lomenzo Patrick D
NaMLab gGmbH, Noethnitzer Strasse 64a, 01187 Dresden, Germany.
Chair of Nanoelectronics, TU Dresden, 01187 Dresden, Germany.
ACS Appl Mater Interfaces. 2024 Aug 14;16(32):42415-42425. doi: 10.1021/acsami.4c05798. Epub 2024 Jul 31.
The capability to reliably program partial polarization states with nanosecond programming speed and femtojoule energies per bit in ferroelectrics makes them an ideal candidate to realize multibit memory elements for high-density crossbar arrays, which could enable neural network models with a large number of parameters at the edge. However, a thorough understanding of the domain switching dynamics involved in the polarization reversal is required to achieve full control of the multibit capability. Transient current integration measurements are adopted to investigate the domain dynamics in aluminum scandium nitride (AlScN) and hafnium zirconium oxide (HfZrO). The switching dynamics are correlated to the crystal structure of the films. The contributions of domain nucleation and domain wall motion are decoupled by analyzing the rate of change of the time-dependent normalized switched polarization. Thermally activated creep domain wall motion characterizes the AlScN switching dynamics. The statistics of independently nucleating domains and the domain wall creep motion in HfZrO are associated with the spatially inhomogeneous distribution of local switching field due to polymorphism, absence of preferential crystallite orientation, as well as defects and charges that can be located at the grain boundaries. The -axis texture, single-phase nature, and strong likelihood of less fabrication process-induced defects contribute to the homogeneity of the local switching field in AlScN. Nonetheless, defects generated and redistributed upon bipolar electric field switching cycling result in AlScN domain wall pinning. The wake-up effect in HfZrO is explained thorough the continuous addition of switchable regions associated with two independent distributions of characteristic switching times.
铁电体能够以纳秒编程速度和每比特飞焦耳能量可靠地编程部分极化状态,这使其成为实现用于高密度交叉阵列的多位存储元件的理想候选者,这可以在边缘实现具有大量参数的神经网络模型。然而,要完全控制多位能力,需要深入了解极化反转中涉及的畴切换动力学。采用瞬态电流积分测量来研究氮化铝钪(AlScN)和氧化铪锆(HfZrO)中的畴动力学。切换动力学与薄膜的晶体结构相关。通过分析随时间变化的归一化切换极化的变化率,将畴成核和畴壁运动的贡献解耦。热激活蠕变畴壁运动表征了AlScN的切换动力学。HfZrO中独立成核畴的统计和畴壁蠕变运动与由于多晶型、不存在优先微晶取向以及可位于晶界处的缺陷和电荷导致的局部切换场的空间不均匀分布有关。AlScN的c轴织构、单相性质以及较少受制造工艺诱导缺陷的强烈可能性有助于局部切换场的均匀性。尽管如此,双极电场切换循环时产生和重新分布的缺陷导致AlScN畴壁钉扎。通过与两个独立的特征切换时间分布相关的可切换区域的连续添加,解释了HfZrO中的唤醒效应。