Suppr超能文献

奴卡菌属和链霉菌属对导致新生儿败血症的多重耐药病原体的抗菌活性。

Antibacterial activity of Nocardia spp. and Streptomyces sp. on multidrug-resistant pathogens causing neonatal sepsis.

机构信息

Universidad Autónoma del Estado de México, Facultad de Medicina, Laboratorio de Investigación en Microbiología Médica y Ambiental, Toluca, Mexico.

Universidad Autónoma del Estado de México, Facultad de Medicina, Laboratorio de Neuroquímica, Toluca, Mexico.

出版信息

Rev Inst Med Trop Sao Paulo. 2024 Jul 29;66:e42. doi: 10.1590/S1678-9946202466042. eCollection 2024.

Abstract

Neonatal sepsis leads to severe morbidity and occasionally death among neonates within the first week following birth, particularly in low- and middle-income countries. Empirical therapy includes antibiotics recommended by WHO. However, these have been ineffective against antimicrobial multidrug-resistant bacterial strains such as Klebsiella spp, Escherichia coli, and Staphylococcus aureus species. To counter this problem, new molecules and alternative sources of compounds with antibacterial activity are sought as options. Actinobacteria, particularly pathogenic strains, have revealed a biotechnological potential still underexplored. This study aimed to determine the presence of biosynthetic gene clusters and the antimicrobial activity of actinobacterial strains isolated from clinical cases against multidrug-resistant bacteria implicated in neonatal sepsis. In total, 15 strains isolated from clinical cases of actinomycetoma were used. PCR screening for the PKS-I, PKS-II, NRPS-I, and NRPS-II biosynthetic systems determined their secondary metabolite-producing potential. The strains were subsequently assayed for antimicrobial activity by the perpendicular cross streak method against Escherichia fergusonii Sec 23, Klebsiella pneumoniae subsp. pneumoniae H1064, Klebsiella variicola H776, Klebsiella oxytoca H793, and Klebsiella pneumoniae subsp. ozaenae H7595, previously classified as multidrug-resistant. Finally, the strains were identified by 16S rRNA gene sequence analysis. It was found that 100% of the actinobacteria had biosynthetic systems. The most frequent biosynthetic system was NRPS-I (100%), and the most frequent combination was NRPS-I and PKS-II (27%). All 15 strains showed antimicrobial activity. The strain with the highest antimicrobial activity was Streptomyces albus 94.1572, as it inhibited the growth of the five multidrug-resistant bacteria evaluated.

摘要

新生儿败血症会导致新生儿在出生后第一周内出现严重的发病率,偶尔甚至导致死亡,尤其是在低收入和中等收入国家。经验性治疗包括世界卫生组织推荐的抗生素。然而,这些抗生素对多种抗微生物药物耐药的细菌菌株(如克雷伯氏菌属、大肠杆菌和金黄色葡萄球菌)无效。为了解决这个问题,人们正在寻找新的分子和具有抗菌活性的替代化合物来源作为选择。放线菌,特别是致病菌株,具有尚未充分探索的生物技术潜力。本研究旨在确定从临床病例中分离的放线菌菌株中生物合成基因簇的存在以及针对与新生儿败血症相关的多种抗微生物药物耐药细菌的抗菌活性。总共使用了从放线菌病临床病例中分离的 15 株菌株。聚合酶链反应(PCR)筛选 PKS-I、PKS-II、NRPS-I 和 NRPS-II 生物合成系统,以确定它们产生次生代谢产物的潜力。随后,通过垂直交叉条纹法测定这些菌株对先前分类为多种抗微生物药物耐药的埃希氏菌弗格森ii Sec 23、肺炎克雷伯菌亚种。肺炎克雷伯菌 H1064、产酸克雷伯菌 H776、产酸克雷伯菌 H793 和臭鼻克雷伯菌 H7595 的抗菌活性。最后,通过 16S rRNA 基因序列分析鉴定菌株。结果发现,100%的放线菌具有生物合成系统。最常见的生物合成系统是 NRPS-I(100%),最常见的组合是 NRPS-I 和 PKS-II(27%)。所有 15 株菌株均显示出抗菌活性。抗菌活性最高的菌株是白色链霉菌 94.1572,因为它抑制了所评估的五种多种抗微生物药物耐药细菌的生长。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2355/11295289/d122ef58968c/1678-9946-rimtsp-66-S1678-9946202466042-gf01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验