Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
Acc Chem Res. 2024 Aug 20;57(16):2267-2278. doi: 10.1021/acs.accounts.4c00226. Epub 2024 Jul 31.
ConspectusLife is an exergonic chemical reaction. The same was true when the very first cells emerged at life's origin. In order to live, all cells need a source of carbon, energy, and electrons to drive their overall reaction network (metabolism). In most cells, these are separate pathways. There is only one biochemical pathway that serves all three needs simultaneously: the acetyl-CoA pathway of CO fixation. In the acetyl-CoA pathway, electrons from H reduce CO to pyruvate for carbon supply, while methane or acetate synthesis are coupled to energy conservation as ATP. This simplicity and thermodynamic favorability prompted Georg Fuchs and Erhard Stupperich to propose in 1985 that the acetyl-CoA pathway might mark the origin of metabolism, at the same time that Steve Ragsdale and Harland Wood were uncovering catalytic roles for Fe, Co, and Ni in the enzymes of the pathway. Subsequent work has provided strong support for those proposals.In the presence of Fe, Co, and Ni in their native metallic state as catalysts, aqueous H and CO react specifically to formate, acetate, methane, and pyruvate overnight at 100 °C. These metals (and their alloys) thus replace the function of over 120 enzymes required for the conversion of H and CO to pyruvate via the pathway and its cofactors, an unprecedented set of findings in the study of biochemical evolution. The reactions require alkaline conditions, which promote hydrogen oxidation by proton removal and are naturally generated in serpentinizing (H-producing) hydrothermal vents. Serpentinizing hydrothermal vents furthermore produce natural deposits of native Fe, Co, Ni, and their alloys. These are precisely the metals that reduce CO with H in the laboratory; they are also the metals found at the active sites of enzymes in the acetyl-CoA pathway. Iron, cobalt and nickel are relicts of the environments in which metabolism arose, environments that still harbor ancient methane- and acetate-producing autotrophs today. This convergence indicates bedrock-level antiquity for the acetyl-CoA pathway. In acetogens and methanogens growing on H as reductant, the acetyl-CoA pathway requires flavin-based electron bifurcation as a source of reduced ferredoxin (a 4Fe4S cluster-containing protein) in order to function. Recent findings show that H can reduce the 4Fe4S clusters of ferredoxin in the presence of native iron, uncovering an evolutionary precursor of flavin-based electron bifurcation and suggesting an origin of FeS-dependent electron transfer in proteins. Traditionally discussed as catalysts in early evolution, the most common function of FeS clusters in metabolism is one-electron transfer, also in radical SAM enzymes, a large and ancient enzyme family. The cofactors and active sites in enzymes of the acetyl-CoA pathway uncover chemical antiquity in metabolism involving metals, methyl groups, methyl transfer reactions, cobamides, pterins, GTP, -adenosylmethionine, radical SAM enzymes, and carbon-metal bonds. The reaction sequence from H and CO to pyruvate on naturally deposited native metals is maximally simple. It requires neither nitrogen, sulfur, phosphorus, RNA, ion gradients, nor light. Solid-state metal catalysts tether the origin of metabolism to a H-producing, serpentinizing hydrothermal vent.
生命是一种释放能量的化学反应。在生命起源时,第一个细胞出现时也是如此。为了生存,所有细胞都需要碳、能量和电子的来源来驱动它们的整体反应网络(新陈代谢)。在大多数细胞中,这些是分开的途径。只有一种生物化学途径可以同时满足这三种需求:CO 固定的乙酰辅酶 A 途径。在乙酰辅酶 A 途径中,来自 H 的电子将 CO 还原为丙酮酸以提供碳源,同时甲烷或乙酸盐的合成与 ATP 的能量守恒相偶联。这种简单性和热力学优势促使 Georg Fuchs 和 Erhard Stupperich 在 1985 年提出,乙酰辅酶 A 途径可能标志着新陈代谢的起源,与此同时,Steve Ragsdale 和 Harland Wood 正在发现 Fe、Co 和 Ni 在途径及其辅助因子中的酶的催化作用。随后的工作为这些提议提供了强有力的支持。
在 Fe、Co 和 Ni 以其天然金属状态作为催化剂存在的情况下,在 100°C 下,水合 H 和 CO 特异性反应形成甲酸盐、乙酸盐、甲烷和丙酮酸, overnight。这些金属(及其合金)因此取代了通过途径及其辅助因子将 H 和 CO 转化为丙酮酸所需的 120 多种酶的功能,这是生物化学进化研究中前所未有的发现。反应需要碱性条件,碱性条件通过质子去除促进氢氧化,并且在蛇纹石化(产生 H)热液喷口自然产生。蛇纹石化热液喷口还产生天然的铁、钴、镍及其合金的原生沉积物。这些正是在实验室中用 H 还原 CO 的金属;它们也是乙酰辅酶 A 途径中酶的活性部位发现的金属。铁、钴和镍是新陈代谢出现的环境的遗迹,今天这些环境仍然栖息着古老的产甲烷和产乙酸的自养生物。这种趋同表明乙酰辅酶 A 途径具有基石般的古老性。在以 H 作为还原剂的产乙酸菌和产甲烷菌中,乙酰辅酶 A 途径需要黄素基电子分叉作为还原型铁氧还蛋白(一种含有 4Fe4S 簇的蛋白质)的来源才能发挥作用。最近的发现表明,在天然存在的铁存在下,H 可以还原铁氧还蛋白的 4Fe4S 簇,揭示了黄素基电子分叉的进化前体,并暗示了蛋白质中 FeS 依赖性电子转移的起源。传统上被讨论为早期进化中的催化剂,FeS 簇在代谢中的最常见功能是一电子转移,也在 radical SAM 酶中,这是一个庞大而古老的酶家族。乙酰辅酶 A 途径中的酶的辅因子和活性部位揭示了涉及金属、甲基、甲基转移反应、钴胺素、蝶呤、GTP、-腺苷甲硫氨酸、radical SAM 酶和碳-金属键的代谢中的化学古老性。在天然沉积的原生金属上从 H 和 CO 到丙酮酸的反应序列是最简单的。它既不需要氮、硫、磷、RNA、离子梯度,也不需要光。固态金属催化剂将新陈代谢的起源与产生 H 的蛇纹石化热液喷口联系起来。