Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; email:
Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA.
Annu Rev Microbiol. 2024 Nov;78(1):255-276. doi: 10.1146/annurev-micro-041222-024843. Epub 2024 Nov 7.
Bacteria encode an arsenal of diverse systems that defend against phage infection. A common theme uniting many prevalent antiphage defense systems is the use of specialized nucleotide signals that function as second messengers to activate downstream effector proteins and inhibit viral propagation. In this article, we review the molecular mechanisms controlling nucleotide immune signaling in four major families of antiphage defense systems: CBASS, Pycsar, Thoeris, and type III CRISPR immunity. Analyses of the individual steps connecting phage detection, nucleotide signal synthesis, and downstream effector function reveal shared core principles of signaling and uncover system-specific strategies used to augment immune defense. We compare recently discovered mechanisms used by phages to evade nucleotide immune signaling and highlight convergent strategies that shape host-virus interactions. Finally, we explain how the evolutionary connection between bacterial antiphage defense and eukaryotic antiviral immunity defines fundamental rules that govern nucleotide-based immunity across all kingdoms of life.
细菌编码了一系列多样化的系统,用于防御噬菌体感染。许多流行的抗噬菌体防御系统的一个共同主题是利用专门的核苷酸信号作为第二信使,激活下游效应蛋白并抑制病毒的复制。在本文中,我们综述了控制四大类抗噬菌体防御系统中核苷酸免疫信号的分子机制:CBASS、Pycsar、Thoeris 和 III 型 CRISPR 免疫。对连接噬菌体检测、核苷酸信号合成和下游效应功能的各个步骤的分析揭示了信号传递的共同核心原则,并揭示了用于增强免疫防御的系统特异性策略。我们比较了噬菌体逃避核苷酸免疫信号的最新发现机制,并强调了塑造宿主-病毒相互作用的趋同策略。最后,我们解释了细菌抗噬菌体防御和真核抗病毒免疫之间的进化联系如何定义了支配所有生命领域基于核苷酸的免疫的基本规则。