College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian, 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China.
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, P. O. Box 110, Dalian 116023, China.
Colloids Surf B Biointerfaces. 2024 Nov;243:114119. doi: 10.1016/j.colsurfb.2024.114119. Epub 2024 Jul 22.
With the continuous increasing threat of drug-resistant bacteria induced cutaneous wound infections, there is a growing demand for novel effective antibiotics-alternative antibacterial strategies for clinical anti-infective therapy. Here, we report the fabrication and antibacterial efficacy of AgS@H-CeO photonic nanocomposites with rough surface through in-situ growth of AgS nanoparticles on CeO hollow spheres. With excellent photothermal property and peroxidase-like activity, as well as increased bacterial adhesion, the photonic nanocomposites demonstrated a broad-spectrum synergistic antibacterial effect against Gram-positive, Gram-positive bacteria and fungi as well biofilm in vitro. Significantly, the nanocomposites can effectively eradicate drug-resistant bacteria such as Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and Gram-negative extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (ESBL E. coli). Notably, in vivo assessments validated its synergistic therapeutic potential in the treatment of MRSA-infected cutaneous wounds, all while maintaining excellent biosafety and biocompatibility. Our study offers a competitive and promising strategy for the development of a multifunctional synergistic antibacterial platform poised to effectively treat drug-resistant bacteria-infected cutaneous wounds.
随着耐药菌引起的皮肤创面感染威胁的不断增加,临床抗感染治疗对新型有效抗生素替代抗菌策略的需求日益增长。在这里,我们通过在 CeO 空心球上原位生长 AgS 纳米粒子,报告了具有粗糙表面的 AgS@H-CeO 光子纳米复合材料的制备和抗菌功效。该光子纳米复合材料具有优异的光热性能和过氧化物酶样活性,以及增加的细菌黏附性,对革兰氏阳性菌、革兰氏阴性菌和真菌以及体外生物膜表现出广谱协同抗菌作用。值得注意的是,该纳米复合材料可以有效消除耐药菌,如革兰氏阳性耐甲氧西林金黄色葡萄球菌(MRSA)和革兰氏阴性产超广谱β-内酰胺酶(ESBL)的大肠杆菌(ESBL E. coli)。值得注意的是,体内评估验证了其在治疗 MRSA 感染性皮肤创面方面的协同治疗潜力,同时保持了优异的生物安全性和生物相容性。我们的研究为开发多功能协同抗菌平台提供了一种有竞争力和有前途的策略,有望有效治疗耐药菌感染的皮肤创面。