Suppr超能文献

人工智能在护士教育中的研究热点和主题趋势:1994 年至 2023 年的文献计量分析。

The research hotspots and theme trends of artificial intelligence in nurse education: A bibliometric analysis from 1994 to 2023.

机构信息

School of Medicine, Hunan Normal University, Changsha, Hunan, People's Republic of China.

School of Medicine, Hunan Normal University, Changsha, Hunan, People's Republic of China.

出版信息

Nurse Educ Today. 2024 Oct;141:106321. doi: 10.1016/j.nedt.2024.106321. Epub 2024 Jul 26.

Abstract

OBJECTIVES

To explore research hotspots and theme trends in artificial intelligence in nurse education using bibliometric analysis.

DESIGN

Bibliometric analysis.

DATA SOURCES

Literature from the Web of Science Core Collection from the time of construction to October 31, 2023 was searched.

REVIEW METHODS

Analyses of countries, authors, institutions, journals, and keywords were conducted using Bibliometrix (based on R language), CiteSpace, the online analysis platform (bibliometric), Vosviewer, and Pajek.

RESULTS

A total of 135 articles with a straight upward trend over the last three years were retrieved. By fitting the curve R = 0.6022 (R > 0.4), we predicted that the number of annual articles is projected to grow in the coming years. The United States (n = 38), the National University of Singapore (n = 16), Professor Jun Ota (n = 8), and Nurse Education Today (n = 14) are the countries, institutions, authors, and journals that contributed to the most publications, respectively. Collaborative network analysis revealed that 32 institutional and 64 author collaborative teams were established. We identified ten high-frequency keywords and nine clusters. We categorized the research hotspots of artificial intelligence in nurse education into three areas: (1) Artificial intelligence-enhanced simulation robots, (2) machine learning and data mining, and (3) large language models based on natural language processing and deep learning. By analyzing the temporal and spatial evolution of keywords and burst detection, we found that future research trends may include (1) expanding and deepening the application of AI technology, (2) assessment of behavioral intent and educational outcomes, and (3) moral and ethical considerations.

CONCLUSIONS

Future research should be conducted on technology applications, behavioral intent, ethical policy, international cooperation, interdisciplinary cooperation, and sustainability to promote the continued development and innovation of AI in nurse education.

摘要

目的

运用文献计量学分析探讨护理教育中人工智能的研究热点和主题趋势。

设计

文献计量学分析。

资料来源

从 Web of Science 核心合集建立到 2023 年 10 月 31 日检索文献。

综述方法

采用 Bibliometrix(基于 R 语言)、CiteSpace、在线分析平台(文献计量)、Vosviewer 和 Pajek 对国家、作者、机构、期刊和关键词进行分析。

结果

共检索到 135 篇过去三年呈直线上升趋势的文章。通过拟合曲线 R = 0.6022(R > 0.4),我们预测未来几年每年的文章数量将继续增长。美国(n = 38)、新加坡国立大学(n = 16)、Jun Ota 教授(n = 8)和《今日护理教育》(n = 14)是发表文章最多的国家、机构、作者和期刊。合作网络分析显示,建立了 32 个机构合作团队和 64 个作者合作团队。我们确定了 10 个高频关键词和 9 个聚类。我们将护理教育中人工智能的研究热点分为三个领域:(1)人工智能增强模拟机器人,(2)机器学习和数据挖掘,(3)基于自然语言处理和深度学习的大型语言模型。通过分析关键词的时间和空间演变以及突发检测,我们发现未来的研究趋势可能包括(1)扩大和深化人工智能技术的应用,(2)评估行为意图和教育成果,以及(3)道德和伦理考虑。

结论

未来的研究应关注技术应用、行为意图、伦理政策、国际合作、跨学科合作和可持续性,以促进护理教育中人工智能的持续发展和创新。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验