Suppr超能文献

GCReID:基于元学习和知识积累的广义连续行人再识别。

GCReID: Generalized continual person re-identification via meta learning and knowledge accumulation.

机构信息

School of Computer Science and Engineering, Northeastern University, Shenyang, 110169, Liaoning, China.

School of Computer Science and Engineering, Northeastern University, Shenyang, 110169, Liaoning, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang, 110169, Liaoning, China.

出版信息

Neural Netw. 2024 Nov;179:106561. doi: 10.1016/j.neunet.2024.106561. Epub 2024 Jul 22.

Abstract

Person re-identification (ReID) has made good progress in stationary domains. The ReID model must be retrained to adapt to new scenarios (domains) as they emerge unexpectedly, which leads to catastrophic forgetting. Continual learning trains the model in the order of domain emergence to alleviate catastrophic forgetting. However, generalization ability of the model is still limited due to the distribution difference between training and testing domains. To address the above problem, we propose the generalized continual person re-Identification (GCReID) model to continuously train an anti-forgetting and generalizable model. We endeavor to increase the diversity of samples by prior to simulate unseen domains. Meta-train and meta-test are adopted to enhance generalization of the model. Universal knowledge extracted from all seen domains and the simulated domains is stored in a set of feature embeddings. The knowledge is continually updated and applied to guide meta-train and meta-test via a graph attention network. Extensive experiments on 12 benchmark datasets and comparisons with 6 representative models demonstrate the effectiveness of the proposed model GCReID in enhancing generalization performance on unseen domains and alleviating catastrophic forgetting of seen domains. The code will be available at https://github.com/DFLAG-NEU/GCReID if our work is accepted.

摘要

人体重识别(ReID)在固定领域取得了很好的进展。当新的场景(领域)意外出现时,ReID 模型必须重新训练以适应,这会导致灾难性遗忘。连续学习按领域出现的顺序训练模型,以减轻灾难性遗忘。然而,由于训练和测试领域之间的分布差异,模型的泛化能力仍然有限。为了解决上述问题,我们提出了广义连续人体重识别(GCReID)模型,以持续训练抗遗忘和可泛化的模型。我们努力通过先验来增加样本的多样性,以模拟未见过的领域。元训练和元测试被采用来提高模型的泛化能力。从所有见过的领域和模拟的领域中提取的通用知识被存储在一组特征嵌入中。知识通过图注意网络不断更新,并应用于指导元训练和元测试。在 12 个基准数据集上进行的广泛实验以及与 6 个代表性模型的比较表明,所提出的模型 GCReID 在提高未见领域的泛化性能和减轻已见领域的灾难性遗忘方面是有效的。如果我们的工作被接受,代码将可在 https://github.com/DFLAG-NEU/GCReID 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验