Suppr超能文献

联合被动声学映射和磁共振测温法用于监测相移纳米乳剂增强聚焦超声治疗

Combined passive acoustic mapping and magnetic resonance thermometry for monitoring phase-shift nanoemulsion enhanced focused ultrasound therapy.

作者信息

Crake Calum, Meral F Can, Burgess Mark T, Papademetriou Iason T, McDannold Nathan J, Porter Tyrone M

机构信息

Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, United States of America.

出版信息

Phys Med Biol. 2017 Jul 13;62(15):6144-6163. doi: 10.1088/1361-6560/aa77df.

Abstract

Focused ultrasound (FUS) has the potential to enable precise, image-guided noninvasive surgery for the treatment of cancer in which tumors are identified and destroyed in a single integrated procedure. However, success of the method in highly vascular organs has been limited due to heat losses to perfusion, requiring development of techniques to locally enhance energy absorption and heating. In addition, FUS procedures are conventionally monitored using MRI, which provides excellent anatomical images and can map temperature, but is not capable of capturing the full gamut of available data such as the acoustic emissions generated during this inherently acoustically-driven procedure. Here, we employed phase-shift nanoemulsions (PSNE) embedded in tissue phantoms to promote cavitation and hence temperature rise induced by FUS. In addition, we incorporated passive acoustic mapping (PAM) alongside simultaneous MR thermometry in order to visualize both acoustic emissions and temperature rise, within the bore of a full scale clinical MRI scanner. Focal cavitation of PSNE could be resolved using PAM and resulted in accelerated heating and increased the maximum elevated temperature measured via MR thermometry compared to experiments without nanoemulsions. Over time, the simultaneously acquired acoustic and temperature maps show translation of the focus of activity towards the FUS transducer, and the magnitude of the increase in cavitation and focal shift both increased with nanoemulsion concentration. PAM results were well correlated with MRI thermometry and demonstrated greater sensitivity, with the ability to detect cavitation before enhanced heating was observed. The results suggest that PSNE could be beneficial for enhancement of thermal focused ultrasound therapies and that PAM could be a critical tool for monitoring this process.

摘要

聚焦超声(FUS)有潜力实现精确的、图像引导的非侵入性手术来治疗癌症,即在单一整合程序中识别并摧毁肿瘤。然而,由于灌注导致的热损失,该方法在高血管器官中的成功率有限,这就需要开发局部增强能量吸收和加热的技术。此外,FUS手术传统上使用MRI进行监测,MRI能提供出色的解剖图像并可绘制温度图,但无法捕捉所有可用数据,比如在这个本质上由声学驱动的过程中产生的声发射。在此,我们将相移纳米乳液(PSNE)嵌入组织模型中,以促进空化,从而提高FUS诱导的温度升高。此外,我们在全尺寸临床MRI扫描仪的孔腔内,将被动声学成像(PAM)与同步MR温度测量相结合,以便可视化声发射和温度升高情况。使用PAM可以分辨出PSNE的局部空化,与没有纳米乳液的实验相比,其导致加热加速,并提高了通过MR温度测量测得的最高升高温度。随着时间推移,同时获取的声学和温度图显示活动焦点向FUS换能器移动,空化增加的幅度和焦点偏移都随纳米乳液浓度的增加而增大。PAM结果与MRI温度测量结果高度相关,并显示出更高的灵敏度,能够在观察到加热增强之前检测到空化。结果表明,PSNE可能有助于增强热聚焦超声治疗,而PAM可能是监测这一过程的关键工具。

相似文献

3
Cavitation-enhanced MR-guided focused ultrasound ablation of rabbit tumors in vivo using phase shift nanoemulsions.
Phys Med Biol. 2014 Jul 7;59(13):3465-81. doi: 10.1088/0031-9155/59/13/3465. Epub 2014 Jun 5.
5
Magnetic resonance imaging for the exploitation of bubble-enhanced heating by high-intensity focused ultrasound: a feasibility study in ex vivo liver.
Ultrasound Med Biol. 2014 May;40(5):956-64. doi: 10.1016/j.ultrasmedbio.2013.11.019. Epub 2014 Jan 22.
6
Simultaneous MR thermometry and acoustic radiation force imaging using interleaved acquisition.
Magn Reson Med. 2018 Mar;79(3):1515-1524. doi: 10.1002/mrm.26827. Epub 2017 Aug 10.
7
Novel acoustic coupling bath using magnetite nanoparticles for MR-guided transcranial focused ultrasound surgery.
Med Phys. 2019 Dec;46(12):5444-5453. doi: 10.1002/mp.13863. Epub 2019 Oct 29.
9
The impact of vaporized nanoemulsions on ultrasound-mediated ablation.
J Ther Ultrasound. 2013 Apr 25;1:2. doi: 10.1186/2050-5736-1-2. eCollection 2013.

引用本文的文献

1
Volumetric Passive Acoustic Mapping and Cavitation Detection of Nanobubbles under Low-Frequency Insonation.
ACS Mater Au. 2024 Oct 29;5(1):159-169. doi: 10.1021/acsmaterialsau.4c00064. eCollection 2025 Jan 8.
2
Ultrasonic Nakagami imaging for automatically positioning and identifying the treated lesion induced by histotripsy.
Ultrason Sonochem. 2024 Oct;109:107002. doi: 10.1016/j.ultsonch.2024.107002. Epub 2024 Jul 25.
3
Effect of Overpressure on Acoustic Emissions and Treated Tissue Histology in ex Vivo Bulk Ultrasound Ablation.
Ultrasound Med Biol. 2021 Aug;47(8):2360-2376. doi: 10.1016/j.ultrasmedbio.2021.04.006. Epub 2021 May 20.
4
Contactless Thermometry by MRI and MRS: Advanced Methods for Thermotherapy and Biomaterials.
iScience. 2020 Oct 23;23(10):101561. doi: 10.1016/j.isci.2020.101561. Epub 2020 Sep 14.
5
Review on Acoustic Droplet Vaporization in Ultrasound Diagnostics and Therapeutics.
Biomed Res Int. 2019 Jul 14;2019:9480193. doi: 10.1155/2019/9480193. eCollection 2019.
7
Ultrasound-responsive droplets for therapy: A review.
J Control Release. 2019 Jan 10;293:144-154. doi: 10.1016/j.jconrel.2018.11.028. Epub 2018 Nov 29.
10
Power cavitation-guided blood-brain barrier opening with focused ultrasound and microbubbles.
Phys Med Biol. 2018 Mar 15;63(6):065009. doi: 10.1088/1361-6560/aab05c.

本文引用的文献

1
Passive Acoustic Mapping with the Angular Spectrum Method.
IEEE Trans Med Imaging. 2017 Apr;36(4):983-993. doi: 10.1109/TMI.2016.2643565. Epub 2016 Dec 21.
2
A multi-frequency sparse hemispherical ultrasound phased array for microbubble-mediated transcranial therapy and simultaneous cavitation mapping.
Phys Med Biol. 2016 Dec 21;61(24):8476-8501. doi: 10.1088/0031-9155/61/24/8476. Epub 2016 Nov 15.
3
Enhancement and Passive Acoustic Mapping of Cavitation from Fluorescently Tagged Magnetic Resonance-Visible Magnetic Microbubbles In Vivo.
Ultrasound Med Biol. 2016 Dec;42(12):3022-3036. doi: 10.1016/j.ultrasmedbio.2016.08.002. Epub 2016 Sep 22.
4
A Randomized Trial of Focused Ultrasound Thalamotomy for Essential Tremor.
N Engl J Med. 2016 Aug 25;375(8):730-9. doi: 10.1056/NEJMoa1600159.
5
Polymeric Cups for Cavitation-mediated Delivery of Oncolytic Vaccinia Virus.
Mol Ther. 2016 Sep;24(9):1627-33. doi: 10.1038/mt.2016.139. Epub 2016 Jul 4.
7
Passive acoustic mapping utilizing optimal beamforming in ultrasound therapy monitoring.
J Acoust Soc Am. 2015 May;137(5):2573-85. doi: 10.1121/1.4916694.
8
Acoustic Cavitation-Mediated Delivery of Small Interfering Ribonucleic Acids with Phase-Shift Nano-Emulsions.
Ultrasound Med Biol. 2015 Aug;41(8):2191-201. doi: 10.1016/j.ultrasmedbio.2015.04.002. Epub 2015 May 13.
9
Passive acoustic mapping of magnetic microbubbles for cavitation enhancement and localization.
Phys Med Biol. 2015 Jan 21;60(2):785-806. doi: 10.1088/0031-9155/60/2/785. Epub 2015 Jan 7.
10
Cavitation-enhanced MR-guided focused ultrasound ablation of rabbit tumors in vivo using phase shift nanoemulsions.
Phys Med Biol. 2014 Jul 7;59(13):3465-81. doi: 10.1088/0031-9155/59/13/3465. Epub 2014 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验