Clinical Research Centre, Medical University of Bialystok, Białystok, Poland.
Department of Medical Biology, Medical University of Bialystok, A. Mickiewicza 2C, 15-369, Białystok, Poland.
Sci Rep. 2024 Jul 31;14(1):17631. doi: 10.1038/s41598-024-68568-4.
The escalating prevalence of insulin resistance (IR) and type 2 diabetes mellitus (T2D) underscores the urgent need for improved early detection techniques and effective treatment strategies. In this context, our study presents a proteomic analysis of post-exercise skeletal muscle biopsies from individuals across a spectrum of glucose metabolism states: normal, prediabetes, and T2D. This enabled the identification of significant protein relationships indicative of each specific glycemic condition. Our investigation primarily leveraged the machine learning approach, employing the white-box algorithm relative evolutionary hierarchical analysis (REHA), to explore the impact of regulated, mixed mode exercise on skeletal muscle proteome in subjects with diverse glycemic status. This method aimed to advance the diagnosis of IR and T2D and elucidate the molecular pathways involved in its development and the response to exercise. Additionally, we used proteomics-specific statistical analysis to provide a comparative perspective, highlighting the nuanced differences identified by REHA. Validation of the REHA model with a comparable external dataset further demonstrated its efficacy in distinguishing between diverse proteomic profiles. Key metrics such as accuracy and the area under the ROC curve confirmed REHA's capability to uncover novel molecular pathways and significant protein interactions, offering fresh insights into the effects of exercise on IR and T2D pathophysiology of skeletal muscle. The visualizations not only underscored significant proteins and their interactions but also showcased decision trees that effectively differentiate between various glycemic states, thereby enhancing our understanding of the biomolecular landscape of T2D.
胰岛素抵抗(IR)和 2 型糖尿病(T2D)的患病率不断上升,突显了迫切需要改进早期检测技术和有效的治疗策略。在这种情况下,我们的研究对来自不同葡萄糖代谢状态个体的运动后骨骼肌活检进行了蛋白质组学分析:正常、糖尿病前期和 T2D。这使得能够识别出每个特定血糖状态的显著蛋白质关系。我们的研究主要利用机器学习方法,采用白盒算法相对进化层次分析(REHA),探索调节、混合模式运动对不同血糖状态受试者骨骼肌蛋白质组的影响。这种方法旨在推进 IR 和 T2D 的诊断,并阐明其发展和对运动反应涉及的分子途径。此外,我们使用蛋白质组学特定的统计分析提供了一个比较的视角,突出了 REHA 识别的细微差异。使用可比的外部数据集对 REHA 模型进行验证进一步证明了其在区分不同蛋白质组谱方面的有效性。准确性和 ROC 曲线下面积等关键指标证实了 REHA 能够揭示新的分子途径和重要的蛋白质相互作用的能力,为运动对 IR 和 T2D 骨骼肌病理生理学的影响提供了新的见解。可视化不仅强调了显著的蛋白质及其相互作用,还展示了有效区分各种血糖状态的决策树,从而增强了我们对 T2D 生物分子景观的理解。