Division of Population Health, School of Medicine and Population Health, University of Sheffield, Sheffield, S10 2TN, UK.
Healthy Lifespan Institution, University of Sheffield, Sheffield, S10 2TN, UK.
Sci Rep. 2024 Jul 31;14(1):17740. doi: 10.1038/s41598-024-68764-2.
Body Mass Index (BMI) trajectories are important for understanding how BMI develops over time. Missing data is often stated as a limitation in studies that analyse BMI over time and there is limited research exploring how missing data influences BMI trajectories. This study explores the influence missing data has in estimating BMI trajectories and the impact on subsequent analysis. This study uses data from the English Longitudinal Study of Ageing. Distinct BMI trajectories are estimated for adults aged 50 years and over. Next, multiple methods accounting for missing data are implemented and compared. Estimated trajectories are then used to predict the risk of developing type 2 diabetes mellitus (T2DM). Four distinct trajectories are identified using each of the missing data methods: stable overweight, elevated BMI, increasing BMI, and decreasing BMI. However, the likelihoods of individuals following the different trajectories differ between the different methods. The influence of BMI trajectory on T2DM is reduced after accounting for missing data. More work is needed to understand which methods for missing data are most reliable. When estimating BMI trajectories, missing data should be considered. The extent to which accounting for missing data influences cost-effectiveness analyses should be investigated.
体重指数(BMI)轨迹对于了解 BMI 随时间的变化非常重要。在分析随时间变化的 BMI 的研究中,经常将缺失数据作为一个限制因素,并对缺失数据如何影响 BMI 轨迹进行了有限的研究。本研究探讨了缺失数据对估计 BMI 轨迹的影响及其对后续分析的影响。本研究使用了来自英国老龄化纵向研究的数据。为 50 岁及以上的成年人估计了不同的 BMI 轨迹。接下来,实施并比较了多种考虑缺失数据的方法。然后使用估计的轨迹来预测 2 型糖尿病(T2DM)的发病风险。使用每种缺失数据方法都确定了四个不同的轨迹:稳定超重、BMI 升高、BMI 增加和 BMI 降低。然而,不同方法之间个体遵循不同轨迹的可能性不同。在考虑缺失数据后,BMI 轨迹对 T2DM 的影响会降低。需要做更多的工作来了解哪些缺失数据方法最可靠。在估计 BMI 轨迹时,应考虑缺失数据。应研究考虑缺失数据对成本效益分析的影响程度。