Suppr超能文献

超重中国人群中不同的尿酸轨迹与糖尿病发病相关。

Distinct uric acid trajectories are associated with incident diabetes in an overweight Chinese population.

机构信息

Clinical Research Centre, The Third Xiangya Hospital, Central South University, Changsha, China.

Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China.

出版信息

Diabetes Metab. 2021 Mar;47(2):101175. doi: 10.1016/j.diabet.2020.07.002. Epub 2020 Jul 27.

Abstract

AIM

To explore uric acid (UA) trajectories in different body mass index (BMI) populations and to determine their associations with incident diabetes.

METHODS

A total of 4566 adults without diabetes in 2011 were enrolled. All participants underwent a medical examination every year until 2016, and were classified into three subgroups based on BMI: non-obese (BMI<24kg/m); overweight (BMI ≥24kg/m but<28kg/m); and obese (BMI ≥28kg/m). Distinct UA trajectories were identified through group-based trajectory modelling (GBTM). Cox proportional-hazards models were applied to evaluate the associations between UA trajectories and risk of incident diabetes.

RESULTS

UA trajectories were identified in the three BMI subgroups: 'low' (42.4% in non-obese, 22.1% in overweight, 22.0% in obese); 'moderate' (32.5%, 41.1%, 34.8%); 'moderate-high' (18.6%, 29.5%, 30.8%); and 'high' (6.5%, 7.3%, 12.4%). After a 5-year follow-up, 170 (3.7%) participants had developed diabetes. The prevalence of new-onset diabetes increased progressively with the higher UA trajectories in the BMI groups (P values<0.05). Whereas compared with the low trajectory, a significant association between a high UA trajectory and incidence of diabetes was observed only in the overweight population [hazard ratio (HR): 6.95, 95% confidence interval (CI): 1.90-25.45], with no significant associations found in either the non-obese (HR: 0.67, 95% CI: 0.13-3.52) or obese (HR: 0.40, 95% CI: 0.06-2.64) populations, in the fully adjusted model.

CONCLUSION

Higher UA trajectories are significantly associated with an increased risk of incident diabetes, thereby suggesting that monitoring UA trajectories over time may assist in the identification of prediabetes and diabetes, particularly in the overweight population.

摘要

目的

探讨不同体重指数(BMI)人群中尿酸(UA)轨迹与新发糖尿病的关系。

方法

本研究共纳入 2011 年无糖尿病的 4566 名成年人。所有参与者每年接受一次体检,直至 2016 年。根据 BMI 将参与者分为三组:非肥胖组(BMI<24kg/m);超重组(BMI≥24kg/m 但<28kg/m);肥胖组(BMI≥28kg/m)。通过基于群组的轨迹建模(GBTM)确定不同的 UA 轨迹。应用 Cox 比例风险模型评估 UA 轨迹与新发糖尿病风险之间的关系。

结果

在三个 BMI 亚组中均确定了 UA 轨迹:“低”(非肥胖组 42.4%,超重组 22.1%,肥胖组 22.0%);“中”(非肥胖组 32.5%,超重组 41.1%,肥胖组 34.8%);“中高”(非肥胖组 18.6%,超重组 29.5%,肥胖组 30.8%);“高”(非肥胖组 6.5%,超重组 7.3%,肥胖组 12.4%)。经过 5 年的随访,有 170 名(3.7%)参与者发生了糖尿病。随着 BMI 组中 UA 轨迹的升高,新发糖尿病的患病率逐渐增加(P 值均<0.05)。与低轨迹相比,仅在超重人群中,高 UA 轨迹与糖尿病发病之间存在显著关联(风险比[HR]:6.95,95%置信区间[CI]:1.90-25.45),而在非肥胖组(HR:0.67,95%CI:0.13-3.52)和肥胖组(HR:0.40,95%CI:0.06-2.64)中均未发现显著关联,在完全调整模型中也是如此。

结论

较高的 UA 轨迹与新发糖尿病的风险增加显著相关,这表明随着时间的推移监测 UA 轨迹可能有助于识别糖尿病前期和糖尿病,尤其是在超重人群中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验