Suppr超能文献

唾液腺锥形束CT图像中导管缺失型腮腺的自动分割与深度学习分类

Automated segmentation and deep learning classification of ductopenic parotid salivary glands in sialo cone-beam CT images.

作者信息

Halle Elia, Amiel Tevel, Aframian Doron J, Malik Tal, Rozenthal Avital, Shauly Oren, Joskowicz Leo, Nadler Chen, Yeshua Talia

机构信息

Department of Data Mining, Jerusalem College of Technology, Jerusalem, Israel.

Oral Maxillofacial Imaging Unit, Department of Oral Medicine, Sedation and Imaging, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel.

出版信息

Int J Comput Assist Radiol Surg. 2025 Jan;20(1):21-30. doi: 10.1007/s11548-024-03240-w. Epub 2024 Jul 31.

Abstract

PURPOSE

This study addressed the challenge of detecting and classifying the severity of ductopenia in parotid glands, a structural abnormality characterized by a reduced number of salivary ducts, previously shown to be associated with salivary gland impairment. The aim of the study was to develop an automatic algorithm designed to improve diagnostic accuracy and efficiency in analyzing ductopenic parotid glands using sialo cone-beam CT (sialo-CBCT) images.

METHODS

We developed an end-to-end automatic pipeline consisting of three main steps: (1) region of interest (ROI) computation, (2) parotid gland segmentation using the Frangi filter, and (3) ductopenia case classification with a residual neural network (RNN) augmented by multidirectional maximum intensity projection (MIP) images. To explore the impact of the first two steps, the RNN was trained on three datasets: (1) original MIP images, (2) MIP images with predefined ROIs, and (3) MIP images after segmentation.

RESULTS

Evaluation was conducted on 126 parotid sialo-CBCT scans of normal, moderate, and severe ductopenic cases, yielding a high performance of 100% for the ROI computation and 89% for the gland segmentation. Improvements in accuracy and F1 score were noted among the original MIP images (accuracy: 0.73, F1 score: 0.53), ROI-predefined images (accuracy: 0.78, F1 score: 0.56), and segmented images (accuracy: 0.95, F1 score: 0.90). Notably, ductopenic detection sensitivity was 0.99 in the segmented dataset, highlighting the capabilities of the algorithm in detecting ductopenic cases.

CONCLUSIONS

Our method, which combines classical image processing and deep learning techniques, offers a promising solution for automatic detection of parotid glands ductopenia in sialo-CBCT scans. This may be used for further research aimed at understanding the role of presence and severity of ductopenia in salivary gland dysfunction.

摘要

目的

本研究应对了检测腮腺导管减少症并对其严重程度进行分类的挑战,腮腺导管减少症是一种以唾液腺导管数量减少为特征的结构异常,此前已证明其与唾液腺损伤有关。本研究的目的是开发一种自动算法,旨在提高使用唾液腺锥形束CT(sialo-CBCT)图像分析导管减少性腮腺的诊断准确性和效率。

方法

我们开发了一个端到端的自动流程,包括三个主要步骤:(1)感兴趣区域(ROI)计算,(2)使用Frangi滤波器进行腮腺分割,以及(3)使用通过多方向最大强度投影(MIP)图像增强的残差神经网络(RNN)对导管减少症病例进行分类。为了探究前两个步骤的影响,RNN在三个数据集上进行了训练:(1)原始MIP图像,(2)带有预定义ROI的MIP图像,以及(3)分割后的MIP图像。

结果

对126例正常、中度和重度导管减少症病例的腮腺sialo-CBCT扫描进行了评估,ROI计算的性能高达100%,腺体分割的性能为89%。在原始MIP图像(准确率:0.73,F1分数:0.53)、预定义ROI的图像(准确率:0.78,F1分数:0.56)和分割后的图像(准确率:0.95,F1分数:0.90)中,准确率和F1分数均有提高。值得注意的是,在分割数据集中导管减少症的检测灵敏度为0.99,突出了该算法检测导管减少症病例的能力。

结论

我们的方法结合了经典图像处理和深度学习技术,为在sialo-CBCT扫描中自动检测腮腺导管减少症提供了一个有前景的解决方案。这可用于进一步研究,旨在了解导管减少症的存在和严重程度在唾液腺功能障碍中的作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验