Suppr超能文献

口腔颌面放射学中的人工智能:目前有哪些可能性?

Artificial intelligence in oral and maxillofacial radiology: what is currently possible?

机构信息

Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea.

Department of Oral and Maxillofacial Radiology, Seoul National University Dental Hospital, Seoul, Republic of Korea.

出版信息

Dentomaxillofac Radiol. 2021 Mar 1;50(3):20200375. doi: 10.1259/dmfr.20200375. Epub 2020 Nov 16.

Abstract

Artificial intelligence, which has been actively applied in a broad range of industries in recent years, is an active area of interest for many researchers. Dentistry is no exception to this trend, and the applications of artificial intelligence are particularly promising in the field of oral and maxillofacial (OMF) radiology. Recent researches on artificial intelligence in OMF radiology have mainly used convolutional neural networks, which can perform image classification, detection, segmentation, registration, generation, and refinement. Artificial intelligence systems in this field have been developed for the purposes of radiographic diagnosis, image analysis, forensic dentistry, and image quality improvement. Tremendous amounts of data are needed to achieve good results, and involvement of OMF radiologist is essential for making accurate and consistent data sets, which is a time-consuming task. In order to widely use artificial intelligence in actual clinical practice in the future, there are lots of problems to be solved, such as building up a huge amount of fine-labeled open data set, understanding of the judgment criteria of artificial intelligence, and DICOM hacking threats using artificial intelligence. If solutions to these problems are presented with the development of artificial intelligence, artificial intelligence will develop further in the future and is expected to play an important role in the development of automatic diagnosis systems, the establishment of treatment plans, and the fabrication of treatment tools. OMF radiologists, as professionals who thoroughly understand the characteristics of radiographic images, will play a very important role in the development of artificial intelligence applications in this field.

摘要

人工智能近年来在广泛的行业中得到了积极应用,是许多研究人员感兴趣的活跃领域。牙科也不例外,人工智能在口腔颌面(OMF)放射学领域的应用尤其有前景。最近关于 OMF 放射学的人工智能研究主要使用了卷积神经网络,它可以执行图像分类、检测、分割、配准、生成和细化。该领域的人工智能系统已经开发用于放射诊断、图像分析、法医牙科和图像质量改进。为了取得良好的效果,需要大量的数据,并且需要 OMF 放射科医生的参与来制作准确和一致的数据集,这是一项耗时的任务。为了将来在实际临床实践中广泛使用人工智能,还有许多问题需要解决,例如构建大量精细标记的开放数据集、理解人工智能的判断标准以及使用人工智能进行 DICOM 黑客攻击威胁。如果随着人工智能的发展提出了解决这些问题的方案,那么人工智能将在未来得到进一步发展,并有望在自动诊断系统的开发、治疗计划的制定和治疗工具的制作中发挥重要作用。作为透彻了解放射图像特征的专业人士,OMF 放射科医生将在该领域人工智能应用的发展中发挥非常重要的作用。

相似文献

4
7
Understanding deep learning - challenges and prospects.理解深度学习——挑战与展望。
J Pak Med Assoc. 2022 Feb;72(Suppl 1)(2):S59-S63. doi: 10.47391/JPMA.AKU-12.
10

引用本文的文献

10
Artificial intelligence in dental radiology: a narrative review.牙科放射学中的人工智能:一项叙述性综述。
Ann Med Surg (Lond). 2025 Mar 27;87(4):2212-2217. doi: 10.1097/MS9.0000000000003127. eCollection 2025 Apr.

本文引用的文献

2
Deep learning on image denoising: An overview.基于深度学习的图像去噪技术综述。
Neural Netw. 2020 Nov;131:251-275. doi: 10.1016/j.neunet.2020.07.025. Epub 2020 Aug 6.
9
Radiomics: from qualitative to quantitative imaging.放射组学:从定性成像到定量成像。
Br J Radiol. 2020 Apr;93(1108):20190948. doi: 10.1259/bjr.20190948. Epub 2020 Feb 26.
10
Deep learning workflow in radiology: a primer.放射学中的深度学习工作流程:入门指南。
Insights Imaging. 2020 Feb 10;11(1):22. doi: 10.1186/s13244-019-0832-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验