Suppr超能文献

利用ICESat-2 数据和 Google Earth Engine 辅助的多时相多源遥感数据加权核积分进行森林冠层高度的连续测绘。

Continuous mapping of forest canopy height using ICESat-2 data and a weighted kernel integration of multi-temporal multi-source remote sensing data aided by Google Earth Engine.

机构信息

Department of Civil and Environmental Engineering, School of Engineering, Shiraz University, Shiraz, Iran.

Department of Building and Environmental Technology, Faculty of Engineering (LTH), Lund University, Lund, Sweden.

出版信息

Environ Sci Pollut Res Int. 2024 Aug;31(37):49757-49779. doi: 10.1007/s11356-024-34415-2. Epub 2024 Jul 31.

Abstract

Forest Canopy Height (FCH) is a crucial parameter that offers valuable insights into forest structure. Spaceborne LiDAR missions provide accurate FCH measurements, but a significant challenge is their point-based measurements lacking spatial continuity. This study integrated ICESat-2's ATL08-derived FCH values with multi-temporal and multi-source remote sensing (RS) datasets to generate continuous FCH maps for northern forests in Iran. Sentinel-1/2, ALOS-2 PALSAR-2, and FABDEM datasets were prepared in Google Earth Engine (GEE) for FCH mapping, each possessing unique spatial and geometrical characteristics that differ from those of the ATL08 product. Given the importance of accurately representing the geometrical characteristics of the ATL08 segments in modeling FCH, a novel Weighted Kernel (WK) approach was proposed in this paper. The WK approach could better represent the RS datasets within the ATL08 ground segments compared to other commonly used resampling approaches. The correlation between all RS data features improved by approximately 6% compared to previously employed approaches, indicating that the RS data features derived after convolving the WK approach are more predictive of FCH values. Furthermore, the WK approach demonstrated superior performance among machine learning models, with random forests outperforming other models, achieving a coefficient of determination (R) of 0.71, root mean square error (RMSE) of 4.92 m, and mean absolute percentage error (MAPE) of 29.95%. Furthermore, in contrast to previous studies using only summer datasets, this study included spring and autumn data from Sentinel-1/2, resulting in a 6% increase in R and a 0.5-m decrease in RMSE. The proposed methodology filled the research gaps and improved the accuracy of FCH estimations.

摘要

林冠高度 (FCH) 是一个关键参数,可提供有关森林结构的有价值的见解。星载激光雷达任务提供了准确的 FCH 测量值,但一个重大挑战是它们的基于点的测量值缺乏空间连续性。本研究将ICESat-2 的 ATL08 衍生的 FCH 值与多时相和多源遥感 (RS) 数据集相结合,为伊朗北部森林生成连续的 FCH 图。Sentinel-1/2、ALOS-2 PALSAR-2 和 FABDEM 数据集在 Google Earth Engine (GEE) 中进行了准备,用于 FCH 制图,每个数据集都具有与 ATL08 产品不同的独特空间和几何特征。鉴于准确表示 ATL08 段的几何特征在建模 FCH 中的重要性,本文提出了一种新的加权核 (WK) 方法。与其他常用重采样方法相比,WK 方法可以更好地表示 RS 数据集在 ATL08 地面段内的情况。与之前使用的方法相比,所有 RS 数据特征的相关性提高了约 6%,这表明在卷积 WK 方法后得出的 RS 数据特征更能预测 FCH 值。此外,WK 方法在机器学习模型中表现出色,随机森林优于其他模型,决定系数 (R) 为 0.71,均方根误差 (RMSE) 为 4.92 m,平均绝对百分比误差 (MAPE) 为 29.95%。此外,与之前仅使用夏季数据集的研究相比,本研究包括了 Sentinel-1/2 的春季和秋季数据,R 值提高了 6%,RMSE 降低了 0.5 m。所提出的方法填补了研究空白,提高了 FCH 估计的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验