Mahmoudi Shima, Pourakbari Babak, Jafari Erfaneh, Eshaghi Hamid, Movahedi Zahra, Heydari Hosein, Mohammadian Maryam, Rahmati Mohammad Bagher, Tariverdi Marjan, Shalchi Zohreh, Navaeian Amene, Mamishi Setareh
Biotechnology Centre, Silesian University of Technology, Gliwice, 44-100, Poland.
Pediatric Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran.
BMC Infect Dis. 2024 Jul 31;24(1):757. doi: 10.1186/s12879-024-09675-5.
Understanding the factors influencing disease progression and severity in pediatric COVID-19 cases is essential for effective management and intervention strategies. This study aimed to evaluate the discriminative ability of clinical and laboratory parameters to identify predictors of COVID-19 severity and mortality in hospitalized children.
In this multicenter retrospective cohort study, we included 468 pediatric patients with COVID-19. We developed a predictive model using their demographic, clinical, and laboratory data. The performance of the model was assessed using various metrics including sensitivity, specificity, positive predictive value rates, and receiver operating characteristics (ROC).
Our findings demonstrated strong discriminatory power, with an area under the curve (AUC) of 0.818 for severity and 0.873 for mortality prediction. Key risk factors for severe COVID-19 in children include low albumin levels, elevated C-reactive protein (CRP), lactate dehydrogenase (LDH), and underlying medical conditions. Furthermore, ROC curve analysis highlights the predictive value of CRP, LDH, and albumin, with AUC values of 0.789, 0.752, and 0.758, respectively.
Our study indicates that laboratory values are valuable in predicting COVID-19 severity in children. Various factors, including CRP, LDH, and albumin levels, demonstrated statistically significant differences between patient groups, suggesting their potential as predictive markers for disease severity. Implementing predictive analyses based on these markers could aid clinicians in making informed decisions regarding patient management.
了解影响儿童新冠病毒病(COVID-19)病例疾病进展和严重程度的因素对于有效的管理和干预策略至关重要。本研究旨在评估临床和实验室参数在识别住院儿童COVID-19严重程度和死亡率预测指标方面的鉴别能力。
在这项多中心回顾性队列研究中,我们纳入了468例患有COVID-19的儿科患者。我们利用他们的人口统计学、临床和实验室数据建立了一个预测模型。使用包括敏感性、特异性、阳性预测值率和受试者工作特征(ROC)在内的各种指标评估该模型的性能。
我们的研究结果显示出很强的鉴别力,严重程度预测的曲线下面积(AUC)为0.818,死亡率预测的AUC为0.873。儿童严重COVID-19的关键风险因素包括低白蛋白水平、C反应蛋白(CRP)、乳酸脱氢酶(LDH)升高以及基础疾病。此外,ROC曲线分析突出了CRP、LDH和白蛋白的预测价值,其AUC值分别为0.789、0.752和0.758。
我们的研究表明,实验室值在预测儿童COVID-19严重程度方面具有重要价值。包括CRP、LDH和白蛋白水平在内的各种因素在患者组之间显示出统计学上的显著差异,表明它们作为疾病严重程度预测标志物的潜力。基于这些标志物进行预测分析可以帮助临床医生在患者管理方面做出明智的决策。