Gao Junyi, Zhu Yinghao, Wang Wenqing, Wang Zixiang, Dong Guiying, Tang Wen, Wang Hao, Wang Yasha, Harrison Ewen M, Ma Liantao
Centre for Medical Informatics, University of Edinburgh, EH16 4UX Edinburgh, UK.
Health Data Research UK, NW1 2BE London, UK.
Patterns (N Y). 2024 Mar 7;5(4):100951. doi: 10.1016/j.patter.2024.100951. eCollection 2024 Apr 12.
The COVID-19 pandemic highlighted the need for predictive deep-learning models in health care. However, practical prediction task design, fair comparison, and model selection for clinical applications remain a challenge. To address this, we introduce and evaluate two new prediction tasks-outcome-specific length-of-stay and early-mortality prediction for COVID-19 patients in intensive care-which better reflect clinical realities. We developed evaluation metrics, model adaptation designs, and open-source data preprocessing pipelines for these tasks while also evaluating 18 predictive models, including clinical scoring methods and traditional machine-learning, basic deep-learning, and advanced deep-learning models, tailored for electronic health record (EHR) data. Benchmarking results from two real-world COVID-19 EHR datasets are provided, and all results and trained models have been released on an online platform for use by clinicians and researchers. Our efforts contribute to the advancement of deep-learning and machine-learning research in pandemic predictive modeling.
新冠疫情凸显了医疗保健领域对预测性深度学习模型的需求。然而,实际的预测任务设计、公平比较以及临床应用中的模型选择仍然是一项挑战。为解决这一问题,我们引入并评估了两项新的预测任务——针对重症监护中的新冠患者的特定结果住院时长和早期死亡率预测,它们能更好地反映临床实际情况。我们为这些任务开发了评估指标、模型适配设计和开源数据预处理管道,同时还评估了18种预测模型,包括临床评分方法以及针对电子健康记录(EHR)数据量身定制的传统机器学习、基础深度学习和高级深度学习模型。提供了来自两个真实世界新冠EHR数据集的基准测试结果,所有结果和训练好的模型都已在一个在线平台上发布,供临床医生和研究人员使用。我们的工作推动了大流行预测建模中深度学习和机器学习研究的发展。