Zhang Bin, Hu Yangnan, Du Haoliang, Han Shanying, Ren Lei, Cheng Hong, Wang Yusong, Gao Xin, Zheng Shasha, Cui Qingyue, Tian Lei, Liu Tingting, Sun Jiaqiang, Chai Renjie
State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
J Nanobiotechnology. 2024 Jul 31;22(1):458. doi: 10.1186/s12951-024-02742-8.
Cochlear implants can directly activate the auditory system's primary sensory neurons, the spiral ganglion neurons (SGNs), via circumvention of defective cochlear hair cells. This bypass restores auditory input to the brainstem. SGN loss etiologies are complex, with limited mammalian regeneration. Protecting and revitalizing SGN is critical. Tissue engineering offers a novel therapeutic strategy, utilizing seed cells, biomolecules, and scaffold materials to create a cellular environment and regulate molecular cues. This review encapsulates the spectrum of both human and animal research, collating the factors contributing to SGN loss, the latest advancements in the utilization of exogenous stem cells for auditory nerve repair and preservation, the taxonomy and mechanism of action of standard biomolecules, and the architectural components of scaffold materials tailored for the inner ear. Furthermore, we delineate the potential and benefits of the biohybrid neural interface, an incipient technology in the realm of implantable devices. Nonetheless, tissue engineering requires refined cell selection and differentiation protocols for consistent SGN quality. In addition, strategies to improve stem cell survival, scaffold biocompatibility, and molecular cue timing are essential for biohybrid neural interface integration.
人工耳蜗可以通过绕过有缺陷的耳蜗毛细胞直接激活听觉系统的初级感觉神经元,即螺旋神经节神经元(SGNs)。这种旁路恢复了向脑干的听觉输入。SGNs损失的病因复杂,哺乳动物的再生能力有限。保护和恢复SGNs至关重要。组织工程提供了一种新的治疗策略,利用种子细胞、生物分子和支架材料来创建细胞环境并调节分子信号。这篇综述总结了人类和动物研究的范围,整理了导致SGNs损失的因素、利用外源性干细胞进行听神经修复和保存的最新进展、标准生物分子的分类和作用机制,以及为内耳量身定制的支架材料的结构组成部分。此外,我们还描述了生物混合神经接口的潜力和益处,这是植入式设备领域的一项新兴技术。尽管如此,组织工程需要完善的细胞选择和分化方案以获得一致的SGN质量。此外,提高干细胞存活率、支架生物相容性和分子信号时机的策略对于生物混合神经接口的整合至关重要。