LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France.
L2C, Laboratoire Charles Coulomb, University of Montpellier, CNRS, 34095 Montpellier, France.
Int J Mol Sci. 2024 Aug 22;25(16):9115. doi: 10.3390/ijms25169115.
The degeneration of spiral ganglion neurons (SGNs), which convey auditory signals from hair cells to the brain, can be a primary cause of sensorineural hearing loss (SNHL) or can occur secondary to hair cell loss. Emerging therapies for SNHL include the replacement of damaged SGNs using stem cell-derived otic neuronal progenitors (ONPs). However, the availability of renewable, accessible, and patient-matched sources of human stem cells is a prerequisite for successful replacement of the auditory nerve. In this study, we derived ONP and SGN-like cells by a reliable and reproducible stepwise guidance differentiation procedure of self-renewing human dental pulp stem cells (hDPSCs). This in vitro differentiation protocol relies on the modulation of BMP and TGFβ pathways using a free-floating 3D neurosphere method, followed by differentiation on a Geltrex-coated surface using two culture paradigms to modulate the major factors and pathways involved in early otic neurogenesis. Gene and protein expression analyses revealed efficient induction of a comprehensive panel of known ONP and SGN-like cell markers during the time course of hDPSCs differentiation. Atomic force microscopy revealed that hDPSC-derived SGN-like cells exhibit similar nanomechanical properties as their in vivo SGN counterparts. Furthermore, spiral ganglion neurons from newborn rats come in close contact with hDPSC-derived ONPs 5 days after co-culturing. Our data demonstrate the capability of hDPSCs to generate SGN-like neurons with specific lineage marker expression, bipolar morphology, and the nanomechanical characteristics of SGNs, suggesting that the neurons could be used for next-generation cochlear implants and/or inner ear cell-based strategies for SNHL.
螺旋神经节神经元(SGNs)的退化可导致感音神经性听力损失(SNHL),这些神经元将听觉信号从毛细胞传递到大脑,也可继发于毛细胞丧失。SNHL 的新兴治疗方法包括使用干细胞衍生的耳神经前体细胞(ONPs)替代受损的 SGNs。然而,可再生、可及且与患者匹配的人类干细胞来源是成功替代听神经的前提。在这项研究中,我们通过可靠且可重复的分步指导分化程序,从自我更新的人牙髓干细胞(hDPSCs)中获得了 ONP 和 SGN 样细胞。这种体外分化方案依赖于使用游离 3D 神经球方法调节 BMP 和 TGFβ 途径,然后在 Geltrex 涂层表面上使用两种培养模式来调节早期耳神经发生中涉及的主要因素和途径。基因和蛋白表达分析显示,在 hDPSCs 分化过程中,有效诱导了广泛的已知 ONP 和 SGN 样细胞标志物的表达。原子力显微镜显示,hDPSC 衍生的 SGN 样细胞表现出与其体内 SGN 对应物相似的纳米力学特性。此外,新生大鼠的螺旋神经节神经元在共培养 5 天后与 hDPSC 衍生的 ONPs 紧密接触。我们的数据表明 hDPSCs 具有生成具有特定谱系标志物表达、双极形态和 SGN 纳米力学特性的 SGN 样神经元的能力,这表明这些神经元可用于下一代耳蜗植入物和/或 SNHL 的内耳细胞为基础的策略。