Suppr超能文献

使用 PoissonERM 进行二项结局的自动化泊松回归暴露-反应分析。

Automated Poisson regression exposure-response analysis for binary outcomes with PoissonERM.

机构信息

Pfizer Inc, South San Francisco, California, USA.

Pfizer Inc, Cambridge, Massachusetts, USA.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2024 Oct;13(10):1615-1629. doi: 10.1002/psp4.13207. Epub 2024 Jul 31.

Abstract

PoissonERM is an R package used to conduct exposure-response (ER) analysis on binary outcomes for establishing the relationship between exposure and the occurrence of adverse events (AE). While Poisson regression could be implemented with glm(), PoissonERM provides a simple way to semi-automate the entire analysis and generate an abbreviated report as an R markdown (Rmd) file that includes the essential analysis details with brief conclusions. PoissonERM processes the provided data set using the information from the user's control script and generates summary tables/figures for the exposure metrics, covariates, and event counts of each endpoint (each type of AE). After checking the incidence rate of each AE, the correlation, and missing values in each covariate, an exposure-response model is developed for each endpoint based on the provided specifications. PoissonERM has the flexibility to incorporate and compare multiple scale transformations in its modeling. The best exposure metric is selected based on a univariate model's p-value or deviance ( ) as specified. If a covariate search is specified in the control script, the final model is developed using backward elimination. PoissonERM identifies and avoids highly correlated covariates in the final model development of each endpoint. Predicting event incidence rates using external (simulated) exposure metric data is an additional functionality in PoissonERM, which is useful to understand the event occurrence associated with certain dose regimens. The summary outputs of the cleaned data, model developments, and predictions are saved in the working folder and can be compiled into a HTML report using Rmd.

摘要

PoissonERM 是一个用于分析二元结局的暴露-反应(ER)的 R 包,旨在建立暴露与不良事件(AE)发生之间的关系。虽然可以使用 glm() 进行泊松回归,但 PoissonERM 提供了一种简单的方法,可以半自动完成整个分析,并生成一个缩写的报告作为 R 标记(Rmd)文件,其中包含带有简短结论的基本分析细节。PoissonERM 使用用户控制脚本中的信息处理提供的数据集,并为每个终点(每种 AE)生成暴露指标、协变量和事件计数的汇总表/图。在检查每个 AE 的发病率、相关性和每个协变量中的缺失值后,根据提供的规范为每个终点开发暴露反应模型。PoissonERM 具有在其建模中纳入和比较多种比例变换的灵活性。根据指定的单变量模型 p 值或方差( )选择最佳暴露指标。如果在控制脚本中指定了协变量搜索,则使用后向消除法开发最终模型。PoissonERM 在每个终点的最终模型开发中识别和避免高度相关的协变量。使用外部(模拟)暴露指标数据预测事件发生率是 PoissonERM 的另一个功能,这对于理解与某些剂量方案相关的事件发生非常有用。清理后的数据、模型开发和预测的摘要输出保存在工作文件夹中,并可以使用 Rmd 编译成 HTML 报告。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc57/11494912/c6dc9d8aeca5/PSP4-13-1615-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验