College of Computer Science and Electronic Engineering, Hunan University, Changsha 410000, China.
School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
Bioinformatics. 2020 Dec 8;36(19):4918-4927. doi: 10.1093/bioinformatics/btaa598.
Human microbes play critical roles in drug development and precision medicine. How to systematically understand the complex interaction mechanism between human microbes and drugs remains a challenge nowadays. Identifying microbe-drug associations can not only provide great insights into understanding the mechanism, but also boost the development of drug discovery and repurposing. Considering the high cost and risk of biological experiments, the computational approach is an alternative choice. However, at present, few computational approaches have been developed to tackle this task.
In this work, we leveraged rich biological information to construct a heterogeneous network for drugs and microbes, including a microbe similarity network, a drug similarity network and a microbe-drug interaction network. We then proposed a novel graph convolutional network (GCN)-based framework for predicting human Microbe-Drug Associations, named GCNMDA. In the hidden layer of GCN, we further exploited the Conditional Random Field (CRF), which can ensure that similar nodes (i.e. microbes or drugs) have similar representations. To more accurately aggregate representations of neighborhoods, an attention mechanism was designed in the CRF layer. Moreover, we performed a random walk with restart-based scheme on both drug and microbe similarity networks to learn valuable features for drugs and microbes, respectively. Experimental results on three different datasets showed that our GCNMDA model consistently achieved better performance than seven state-of-the-art methods. Case studies for three microbes including SARS-CoV-2 and two antimicrobial drugs (i.e. Ciprofloxacin and Moxifloxacin) further confirmed the effectiveness of GCNMDA in identifying potential microbe-drug associations.
Python codes and dataset are available at: https://github.com/longyahui/GCNMDA.
Supplementary data are available at Bioinformatics online.
人类微生物在药物开发和精准医学中发挥着关键作用。如何系统地理解人类微生物和药物之间的复杂相互作用机制仍然是当今的一个挑战。识别微生物-药物关联不仅可以提供深入了解机制的见解,还可以促进药物发现和再利用的发展。考虑到生物实验的高成本和风险,计算方法是一种替代选择。然而,目前,很少有计算方法被开发来解决这个问题。
在这项工作中,我们利用丰富的生物学信息构建了一个药物和微生物的异构网络,包括微生物相似性网络、药物相似性网络和微生物-药物相互作用网络。然后,我们提出了一种基于图卷积网络(GCN)的预测人类微生物-药物关联的新框架,称为 GCNMDA。在 GCN 的隐藏层中,我们进一步利用了条件随机场(CRF),它可以确保相似的节点(即微生物或药物)具有相似的表示。为了更准确地聚合邻居的表示,在 CRF 层设计了一个注意力机制。此外,我们在药物和微生物相似性网络上分别执行了基于随机游走的重新启动方案,以分别学习药物和微生物的有价值特征。在三个不同数据集上的实验结果表明,我们的 GCNMDA 模型始终比七种最先进的方法表现更好。对包括 SARS-CoV-2 在内的三种微生物和两种抗菌药物(即环丙沙星和莫西沙星)的案例研究进一步证实了 GCNMDA 识别潜在微生物-药物关联的有效性。
Python 代码和数据集可在 https://github.com/longyahui/GCNMDA 上获得。
补充数据可在生物信息学在线获得。