Suppr超能文献

生成式人工智能:加强心血管成像中的患者教育

Generative Artificial Intelligence: Enhancing Patient Education in Cardiovascular Imaging.

作者信息

Marey Ahmed, Saad Abdelrahman M, Killeen Benjamin D, Gomez Catalina, Tregubova Mariia, Unberath Mathias, Umair Muhammad

机构信息

Alexandria University Faculty of Medicine, Alexandria, 21521, Egypt.

Department of Computer Science, Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD, 21218, United States.

出版信息

BJR Open. 2024 Jul 17;6(1):tzae018. doi: 10.1093/bjro/tzae018. eCollection 2024 Jan.

Abstract

Cardiovascular disease (CVD) is a major cause of mortality worldwide, especially in resource-limited countries with limited access to healthcare resources. Early detection and accurate imaging are vital for managing CVD, emphasizing the significance of patient education. Generative artificial intelligence (AI), including algorithms to synthesize text, speech, images, and combinations thereof given a specific scenario or prompt, offers promising solutions for enhancing patient education. By combining vision and language models, generative AI enables personalized multimedia content generation through natural language interactions, benefiting patient education in cardiovascular imaging. Simulations, chat-based interactions, and voice-based interfaces can enhance accessibility, especially in resource-limited settings. Despite its potential benefits, implementing generative AI in resource-limited countries faces challenges like data quality, infrastructure limitations, and ethical considerations. Addressing these issues is crucial for successful adoption. Ethical challenges related to data privacy and accuracy must also be overcome to ensure better patient understanding, treatment adherence, and improved healthcare outcomes. Continued research, innovation, and collaboration in generative AI have the potential to revolutionize patient education. This can empower patients to make informed decisions about their cardiovascular health, ultimately improving healthcare outcomes in resource-limited settings.

摘要

心血管疾病(CVD)是全球主要的死亡原因,在医疗资源有限的资源匮乏国家尤其如此。早期检测和准确成像对于心血管疾病的管理至关重要,这凸显了患者教育的重要性。生成式人工智能(AI),包括在特定场景或提示下合成文本、语音、图像及其组合的算法,为加强患者教育提供了有前景的解决方案。通过结合视觉和语言模型,生成式人工智能能够通过自然语言交互实现个性化多媒体内容生成,有益于心血管成像方面的患者教育。模拟、基于聊天的交互和基于语音的界面可以提高可及性,尤其是在资源有限的环境中。尽管有潜在益处,但在资源匮乏国家实施生成式人工智能面临数据质量、基础设施限制和伦理考量等挑战。解决这些问题对于成功采用至关重要。还必须克服与数据隐私和准确性相关的伦理挑战,以确保患者有更好的理解、治疗依从性并改善医疗结果。在生成式人工智能方面持续开展研究、创新和合作有可能彻底改变患者教育。这可以使患者能够就其心血管健康做出明智决策,最终改善资源匮乏环境中的医疗结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be99/11290812/5baac357cb7b/tzae018f1.jpg

相似文献

1
Generative Artificial Intelligence: Enhancing Patient Education in Cardiovascular Imaging.
BJR Open. 2024 Jul 17;6(1):tzae018. doi: 10.1093/bjro/tzae018. eCollection 2024 Jan.
3
Generative Artificial Intelligence and Prompt Engineering: A Primer for Orthopaedic Surgeons.
JBJS Rev. 2024 Oct 3;12(10). doi: e24.00122. eCollection 2024 Oct 1.
4
Generative artificial intelligence to produce high-fidelity blastocyst-stage embryo images.
Hum Reprod. 2024 Jun 3;39(6):1197-1207. doi: 10.1093/humrep/deae064.
5
Generative AI in Critical Care Nephrology: Applications and Future Prospects.
Blood Purif. 2024;53(11-12):871-883. doi: 10.1159/000541168. Epub 2024 Aug 30.
6
[Subverting the Future of Teaching: Artificial Intelligence Innovation in Nursing Education].
Hu Li Za Zhi. 2024 Apr;71(2):20-25. doi: 10.6224/JN.202404_71(2).04.
7
Generative AI in Medical Practice: In-Depth Exploration of Privacy and Security Challenges.
J Med Internet Res. 2024 Mar 8;26:e53008. doi: 10.2196/53008.
9
Artificial Intelligence Chatbots in Allergy and Immunology Practice: Where Have We Been and Where Are We Going?
J Allergy Clin Immunol Pract. 2023 Sep;11(9):2697-2700. doi: 10.1016/j.jaip.2023.05.042. Epub 2023 Jun 8.
10
Artificial Intelligence in Hand Surgery - How Generative AI is Transforming the Hand Surgery Landscape.
J Hand Surg Asian Pac Vol. 2024 Apr;29(2):81-87. doi: 10.1142/S2424835524300019. Epub 2024 Mar 26.

引用本文的文献

1
A narrative review on ethical considerations and challenges in AI-driven cardiology.
Ann Med Surg (Lond). 2025 May 12;87(7):4152-4164. doi: 10.1097/MS9.0000000000003349. eCollection 2025 Jul.
2
Artificial intelligence-assisted chatbot: impact on breastfeeding outcomes and maternal anxiety.
BMC Pregnancy Childbirth. 2025 May 30;25(1):631. doi: 10.1186/s12884-025-07753-3.
3
Application of Generative Artificial Intelligence in Dyslipidemia Care.
J Lipid Atheroscler. 2025 Jan;14(1):77-93. doi: 10.12997/jla.2025.14.1.77. Epub 2024 Dec 10.

本文引用的文献

2
Translating musculoskeletal radiology reports into patient-friendly summaries using ChatGPT-4.
Skeletal Radiol. 2024 Aug;53(8):1621-1624. doi: 10.1007/s00256-024-04599-2. Epub 2024 Jan 25.
3
Artificial Intelligence Chatbots' Understanding of the Risks and Benefits of Computed Tomography and Magnetic Resonance Imaging Scenarios.
Can Assoc Radiol J. 2024 Aug;75(3):518-524. doi: 10.1177/08465371231220561. Epub 2024 Jan 6.
4
Assessing AI-Powered Patient Education: A Case Study in Radiology.
Acad Radiol. 2024 Jan;31(1):338-342. doi: 10.1016/j.acra.2023.08.020. Epub 2023 Sep 14.
5
ChatGPT: Can You Prepare My Patients for [F]FDG PET/CT and Explain My Reports?
J Nucl Med. 2023 Dec 1;64(12):1876-1879. doi: 10.2967/jnumed.123.266114.
6
ChatGPT From the Perspective of an Academic Oral and Maxillofacial Radiologist.
Cureus. 2023 Jun 6;15(6):e40053. doi: 10.7759/cureus.40053. eCollection 2023 Jun.
7
Evaluation of an Artificial Intelligence Chatbot for Delivery of IR Patient Education Material: A Comparison with Societal Website Content.
J Vasc Interv Radiol. 2023 Oct;34(10):1760-1768.e32. doi: 10.1016/j.jvir.2023.05.037. Epub 2023 Jun 16.
8
How AI Responds to Common Lung Cancer Questions: ChatGPT vs Google Bard.
Radiology. 2023 Jun;307(5):e230922. doi: 10.1148/radiol.230922.
9
Accuracy of Information and References Using ChatGPT-3 for Retrieval of Clinical Radiological Information.
Can Assoc Radiol J. 2024 Feb;75(1):69-73. doi: 10.1177/08465371231171125. Epub 2023 Apr 20.
10
GPT-4 is here: what scientists think.
Nature. 2023 Mar;615(7954):773. doi: 10.1038/d41586-023-00816-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验