Suppr超能文献

关于人工智能驱动的心脏病学中的伦理考量与挑战的叙述性综述。

A narrative review on ethical considerations and challenges in AI-driven cardiology.

作者信息

Patel Dev, Chetarajupalli Chandramouli, Khan Saad, Khan Surayya, Patel Tirath, Joshua Samuel, Millis Richard M

机构信息

Lokmanya Tilak Municipal Medical College, Mumbai, India.

Zhengzhou University, Henan, PR China.

出版信息

Ann Med Surg (Lond). 2025 May 12;87(7):4152-4164. doi: 10.1097/MS9.0000000000003349. eCollection 2025 Jul.

Abstract

INTRODUCTION

Artificial intelligence (AI) is revolutionizing cardiology by enhancing diagnostic precision, prognostic accuracy, and treatment planning. Its integration raises ethical concerns like bias, privacy, accountability, and the risk of dehumanizing healthcare. This review focuses on navigating these challenges while maximizing AI's potential in patient care.

METHODOLOGY AND AIMS

A narrative review was conducted to explore the ethical challenges associated with AI in cardiology. Key areas of focus included bias in training datasets, data privacy, the "black-box" nature of AI systems, and the need for transparency and accountability in clinical decision-making.

RESULTS AND CRITICAL INSIGHTS

AI improves accuracy in diagnosing and managing cardiovascular conditions but presents risks such as exacerbating healthcare disparities and challenges in patient data security. Strategies include creating ethical frameworks, integrating diverse datasets, and emphasizing the importance of clinician-AI collaboration to ensure equitable outcomes.

CONCLUSION AND LIMITATIONS

AI offers transformative opportunities for cardiology, yet its success hinges on addressing ethical, technical, and regulatory challenges. Robust frameworks promoting fairness, transparency, and privacy are crucial. Limitations include a lack of real-world validation and the need for ongoing oversight to adapt to evolving clinical demands.

摘要

引言

人工智能(AI)正在通过提高诊断精度、预后准确性和治疗规划,给心脏病学带来变革。其整合引发了诸如偏见、隐私、问责制以及医疗保健非人性化风险等伦理问题。本综述着重于应对这些挑战,同时最大限度地发挥人工智能在患者护理中的潜力。

方法与目标

进行了一项叙述性综述,以探讨心脏病学中与人工智能相关的伦理挑战。重点关注的关键领域包括训练数据集的偏差、数据隐私、人工智能系统的“黑箱”性质,以及临床决策中对透明度和问责制的需求。

结果与关键见解

人工智能提高了心血管疾病诊断和管理的准确性,但存在加剧医疗保健差距以及患者数据安全方面的挑战等风险。策略包括创建伦理框架、整合多样化数据集,以及强调临床医生与人工智能协作以确保公平结果的重要性。

结论与局限性

人工智能为心脏病学提供了变革性机遇,但其成功取决于应对伦理、技术和监管挑战。促进公平、透明和隐私的强大框架至关重要。局限性包括缺乏实际验证以及需要持续监督以适应不断变化的临床需求。

相似文献

本文引用的文献

6
On the Impact of Synchronous Electrocardiogram Signals for Heart Sounds Segmentation.同步心电图信号对心音分割的影响
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-5. doi: 10.1109/EMBC40787.2023.10341149.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验