Suppr超能文献

用于直接将CO转化为甲醇且避开CO中间途径的四价钴3,4-吡啶并卟嗪

Cobalt Tetracationic 3,4-Pyridinoporphyrazine for Direct CO to Methanol Conversion Escaping the CO Intermediate Pathway.

作者信息

Zhang Chanjuan, Follana-Berná Jorge, Dragoe Diana, Halime Zakaria, Gotico Philipp, Sastre-Santos Ángela, Aukauloo Ally

机构信息

Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405, Orsay, France.

Current address: Electrochemical Excellent Center, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium.

出版信息

Angew Chem Int Ed Engl. 2024 Dec 9;63(50):e202411967. doi: 10.1002/anie.202411967. Epub 2024 Oct 16.

Abstract

Molecular catalysts offer a unique opportunity to implement different chemical functionalities to steer the efficiency and selectivity for the CO reduction for instance. Metalloporphyrins and metallophthalocyanines are under high scrutiny since their most classic derivatives the tetraphenylporphyrin (TPP) and parent phthalocyanine (Pc), have been used as the molecular platform to install, hydrogen bonds donors, proton relays, cationic fragments, incorporation in MOFs and COFs, to enhance the catalytic power of these catalysts. Herein, we examine the electrocatalytic properties of the tetramethyl cobalt (II) tetrapyridinoporphyrazine (CoTmTPyPz) for the reduction of CO in heterogeneous medium when adsorbed on carbon nanotubes (CNT) at a carbon paper (CP) electrode. Unlike reported electrocatalysis with cobalt based phthalocyanine where CO was advocated as the two electron and two protons reduced intermediate on the way to the formation of methanol, we found here that CoTmTPyPz does not reduce CO to methanol. Henceforth, ruling out a mechanistic pathway where CO is a reaction intermediate.

摘要

分子催化剂为实现不同化学功能提供了独特的机会,例如控制一氧化碳还原反应的效率和选择性。金属卟啉和金属酞菁受到了高度关注,因为它们最经典的衍生物四苯基卟啉(TPP)和母体酞菁(Pc)已被用作分子平台,用于引入氢键供体、质子中继体、阳离子片段、掺入金属有机框架(MOF)和共价有机框架(COF)中,以增强这些催化剂的催化能力。在此,我们研究了四甲基钴(II)四吡啶卟嗪(CoTmTPyPz)在碳纸(CP)电极上吸附于碳纳米管(CNT)时在非均相介质中还原CO的电催化性能。与报道的基于钴酞菁的电催化不同,在基于钴酞菁的电催化中,CO被认为是在形成甲醇的过程中两个电子和两个质子还原的中间体,而我们在此发现CoTmTPyPz不会将CO还原为甲醇。因此,排除了CO是反应中间体的反应机理途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验