Suppr超能文献

用于电化学将CO转化为甲醇的分子钴催化剂的再活化

Reactivating Molecular Cobalt Catalysts for Electrochemical CO Conversion to Methanol.

作者信息

Yu Sunmoon, Yamauchi Hiroki, Menga Davide, Wang Shuo, Herzog Antonia, Xu Hongbin, Zheng Daniel J, Wang Xiao, Iriawan Haldrian, Huang Botao, Nitsche Alexander, Shao-Horn Yang

机构信息

Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

Scientific Research Laboratory, Niterra Co., Ltd, Iwasaki, Komaki, Aichi 485-8510, Japan.

出版信息

J Am Chem Soc. 2025 Apr 9;147(14):12298-12307. doi: 10.1021/jacs.5c02411. Epub 2025 Mar 29.

Abstract

Molecular catalysts immobilized on a carbon support have demonstrated electrocatalytic CO conversion capabilities distinct from those of metallic surfaces. For instance, cobalt phthalocyanine supported on carbon nanotubes (CoPc/CNT) is capable of selective CO-to-methanol conversion with ∼30% selectivity, which cannot be accomplished by other metal catalysts, such as cobalt, silver, and copper. However, despite its promising methanol selectivity, the CoPc/CNT catalyst exhibits a gradual decrease in the methanol production rate during the electrochemical CO reduction reaction (CORR). This catalytic instability impedes its practical application, yet little is known about the origin of the activity decay and viable solutions to circumvent it. In this study, we show that the catalytic deactivation is not an irreversible process caused by the chemical degradation of the catalyst and present reactivation strategies to recover the catalytic performance for stable methanol production. We propose that formaldehyde, an intermediate generated during the CORR, can act as a poisoning species, and its adsorption configuration on the cobalt site can determine the fate of its reaction pathway: carbon-down (*CHO) versus oxygen-down (*OCH) pathways. In contrast to the carbon-down configuration leading to methanol production, the oxygen-down configuration can inhibit its further reduction, poisoning the cobalt active site and causing the deactivation.

摘要

固定在碳载体上的分子催化剂已展现出与金属表面不同的电催化CO转化能力。例如,负载在碳纳米管上的钴酞菁(CoPc/CNT)能够以约30%的选择性将CO选择性转化为甲醇,而钴、银和铜等其他金属催化剂无法实现这一点。然而,尽管CoPc/CNT催化剂具有良好的甲醇选择性,但在电化学CO还原反应(CORR)过程中,其甲醇产率会逐渐下降。这种催化不稳定性阻碍了其实际应用,然而对于活性衰减的根源以及规避它的可行解决方案却知之甚少。在本研究中,我们表明催化失活并非由催化剂的化学降解导致的不可逆过程,并提出了恢复催化性能以稳定生产甲醇的再活化策略。我们提出,CORR过程中产生的中间体甲醛可作为中毒物种,其在钴位点上的吸附构型可决定其反应途径的走向:碳朝下(*CHO)与氧朝下(*OCH)途径。与导致甲醇生成的碳朝下构型相反,氧朝下构型会抑制其进一步还原,使钴活性位点中毒并导致失活。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验