Ke Yaling, Richardson Jeremy O
Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland.
J Chem Phys. 2024 Aug 7;161(5). doi: 10.1063/5.0220908.
In this work, we present a mixed quantum-classical open quantum system dynamics method for studying rate modifications of ground-state chemical reactions in an optical cavity under vibrational strong-coupling conditions. In this approach, the cavity radiation mode is treated classically with a mean-field nuclear force averaging over the remaining degrees of freedom, both within the system and the environment, which are handled quantum mechanically within the hierarchical equations of motion framework. Using this approach, we conduct a comparative analysis by juxtaposing the mixed quantum-classical results with fully quantum-mechanical simulations. After eliminating spurious peaks that can occur when not using the rigorous definition of the rate constant, we confirm the crucial role of the quantum nature of the cavity radiation mode in reproducing the resonant peak observed in the cavity frequency-dependent rate profile. In other words, it appears necessary to explicitly consider the quantized photonic states in studying reactivity modification in vibrational polariton chemistry (at least for the model systems studied in this work), as these phenomena stem from cavity-induced reaction pathways involving resonant energy exchanges between photons and molecular vibrational transitions.
在这项工作中,我们提出了一种混合量子 - 经典开放量子系统动力学方法,用于研究在振动强耦合条件下光学腔中基态化学反应的速率修正。在这种方法中,腔辐射模式采用经典处理,通过平均场核力对系统和环境中其余自由度进行平均,而系统和环境则在运动方程层级框架内进行量子力学处理。使用这种方法,我们将混合量子 - 经典结果与全量子力学模拟并列进行了对比分析。在消除了不使用速率常数的严格定义时可能出现的虚假峰之后,我们证实了腔辐射模式的量子性质在重现腔频率相关速率分布中观察到的共振峰方面的关键作用。换句话说,在研究振动极化子化学中的反应性修正时(至少对于本工作中研究的模型系统),明确考虑量子化的光子态似乎是必要的,因为这些现象源于涉及光子与分子振动跃迁之间共振能量交换的腔诱导反应途径。