Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Orthopaedic Surgery, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA.
JCI Insight. 2024 Aug 1;9(18):e182330. doi: 10.1172/jci.insight.182330.
Energy metabolism, through pathways such as oxidative phosphorylation (OxPhos) and glycolysis, plays a pivotal role in cellular differentiation and function. Our study investigates the impact of OxPhos disruption in cortical bone development by deleting mitochondrial transcription factor A (TFAM). TFAM controls OxPhos by regulating the transcription of mitochondrial genes. The cortical bone, constituting the long bones' rigid shell, is sheathed by the periosteum, a connective tissue layer populated with skeletal progenitors that spawn osteoblasts, the bone-forming cells. TFAM-deficient mice presented with thinner cortical bone, spontaneous midshaft fractures, and compromised periosteal cell bioenergetics, characterized by reduced ATP levels. Additionally, they exhibited an enlarged periosteal progenitor cell pool with impaired osteoblast differentiation. Increasing hypoxia-inducible factor 1a (HIF1) activity within periosteal cells substantially mitigated the detrimental effects induced by TFAM deletion. HIF1 is known to promote glycolysis in all cell types. Our findings underscore the indispensability of OxPhos for the proper accrual of cortical bone mass and indicate a compensatory mechanism between OxPhos and glycolysis in periosteal cells. The study opens new avenues for understanding the relationship between energy metabolism and skeletal health and suggests that modulating bioenergetic pathways may provide a therapeutic avenue for conditions characterized by bone fragility.
能量代谢通过氧化磷酸化(OxPhos)和糖酵解等途径在细胞分化和功能中发挥着关键作用。我们的研究通过删除线粒体转录因子 A(TFAM)来研究 OxPhos 中断对皮质骨发育的影响。TFAM 通过调节线粒体基因的转录来控制 OxPhos。皮质骨构成长骨的刚性外壳,由骨膜包裹,骨膜是一种结缔组织层,其中有骨骼祖细胞,这些祖细胞会产生成骨细胞,即形成骨骼的细胞。TFAM 缺陷小鼠的皮质骨变薄,自发性中段骨折,以及骨膜细胞生物能量受损,表现为 ATP 水平降低。此外,它们还表现出扩大的骨膜祖细胞池,成骨细胞分化受损。增加骨膜细胞中的缺氧诱导因子 1a(HIF1)活性可大大减轻 TFAM 缺失引起的有害影响。众所周知,HIF1 可促进所有细胞类型的糖酵解。我们的研究结果强调了 OxPhos 对皮质骨量适当积累的必要性,并表明骨膜细胞中 OxPhos 和糖酵解之间存在代偿机制。该研究为理解能量代谢与骨骼健康之间的关系开辟了新途径,并表明调节生物能量途径可能为以骨骼脆弱为特征的疾病提供一种治疗途径。