Suppr超能文献

基于神经网络的疼痛强度估计中的不确定性量化。

Uncertainty quantification in neural-network based pain intensity estimation.

作者信息

Ozek Burcu, Lu Zhenyuan, Radhakrishnan Srinivasan, Kamarthi Sagar

机构信息

Mechanical and Industrial Engineering Department, Northeastern University, Boston, Massachusetts, United States of America.

出版信息

PLoS One. 2024 Aug 1;19(8):e0307970. doi: 10.1371/journal.pone.0307970. eCollection 2024.

Abstract

Improper pain management leads to severe physical or mental consequences, including suffering, a negative impact on quality of life, and an increased risk of opioid dependency. Assessing the presence and severity of pain is imperative to prevent such outcomes and determine the appropriate intervention. However, the evaluation of pain intensity is a challenging task because different individuals experience pain differently. To overcome this, many researchers in the field have employed machine learning models to evaluate pain intensity objectively using physiological signals. However, these efforts have primarily focused on pain point estimation, disregarding inherent uncertainty and variability in the data and model. A point estimate, which provides only partial information, is not sufficient for sound clinical decision-making. This study proposes a neural network-based method for objective pain interval estimation, and quantification of uncertainty. Our approach, which enables objective pain intensity estimation with desired confidence probabilities, affords clinicians a better understanding of a person's pain intensity. We explored three distinct algorithms: the bootstrap method, lower and upper bound estimation (LossL) optimized by genetic algorithm, and modified lower and upper bound estimation (LossS) optimized by gradient descent algorithm. Our empirical results demonstrate that LossS outperforms the other two by providing narrower prediction intervals. For 50%, 75%, 85%, and 95% prediction interval coverage probability, LossS provides average interval widths that are 22.4%, 7.9%, 16.7%, and 9.1% narrower than those of LossL, and 19.3%, 21.1%, 23.6%, and 26.9% narrower than those of bootstrap. As LossS outperforms, we assessed its performance in three different model-building approaches: (1) a generalized approach using a single model for the entire population, (2) a personalized approach with separate models for each individual, and (3) a hybrid approach with models for clusters of individuals. Results demonstrate that the hybrid model-building approach provides the best performance.

摘要

不恰当的疼痛管理会导致严重的身体或精神后果,包括痛苦、对生活质量产生负面影响以及阿片类药物依赖风险增加。评估疼痛的存在和严重程度对于预防此类后果并确定适当的干预措施至关重要。然而,疼痛强度的评估是一项具有挑战性的任务,因为不同个体对疼痛的体验不同。为了克服这一问题,该领域的许多研究人员采用机器学习模型,利用生理信号客观地评估疼痛强度。然而,这些努力主要集中在疼痛点估计上,忽略了数据和模型中固有的不确定性和变异性。仅提供部分信息的点估计不足以支持合理的临床决策。本研究提出了一种基于神经网络的方法,用于客观的疼痛区间估计和不确定性量化。我们的方法能够以期望的置信概率进行客观的疼痛强度估计,使临床医生能够更好地了解一个人的疼痛强度。我们探索了三种不同的算法:自助法、通过遗传算法优化的上下界估计(LossL)以及通过梯度下降算法优化的改进上下界估计(LossS)。我们的实证结果表明,LossS通过提供更窄的预测区间,优于其他两种算法。对于50%、75%、85%和95%的预测区间覆盖概率,LossS提供的平均区间宽度比LossL窄22.4%、7.9%、16.7%和9.1%,比自助法窄19.3%、21.1%、23.6%和26.9%。由于LossS表现更优,我们在三种不同的模型构建方法中评估了其性能:(1)使用单个模型适用于整个人群的通用方法,(2)为每个个体单独构建模型的个性化方法,以及(3)为个体集群构建模型的混合方法。结果表明,混合模型构建方法表现最佳。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afef/11293669/3f5e96fda8fa/pone.0307970.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验